Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1
Date Request Received: 7/7/21
Date of Response: 7/20/21
Request No. DOE 1-1
Witness: Larry D. Goodhue

REQUEST:

Re: Response to Staff Tech 1-1 and Updated Exhibit DLW-1, Page 3 (2020 CapEx): The Company's response to Staff Tech 1-1 indicates that it sold bonds on April 2, 2021 totaling $\$ 5,190,000$ in two series (Series A [$\$ 5,065,000$] and Series B [$\$ 125,000]$) at an average coupon rate of 4.056692%. However, Updated Exhibit DLW-1, Page 3, Line 151 indicates that the Company's 2020 CapEx funded with Bonds is $\$ 5,605,797$, which is $\$ 415,797$ greater than the amount of bonds it stated was sold on April 2. Please provide a detailed explanation as to the financing source (if any) for this $\$ 415,797$ differential.

RESPONSE:

The difference cited is the result of the fact that the bonds issued on April 2, 2021, were issued at a "premium" into the markets. Investors and the market will determine the appetite to purchase bonds at either: par, a premium, or a discount. This is all based upon individual investor portfolio requirements, and/or market supply vs demand objectives. When issuing bonds, PWW's overall and sole objective is to provide for the cash flow needed to payoff borrowed FALOC funds for eligible capital projects funded during the preceding year, as qualified and used and useful by year-end, under the QCPAC program. As such, the par amount of the issued bonds will almost always differ from the cash brought in from an issuance, as bonds are almost always issued at premium or discount. In the case of this April 2021 issuance, only \$5,190,000 of bonds (at par value) needed to be issued, in order to bring in the $\$ 5.6$ million in cash needed for these projects. The difference is recorded on the Company's books as Bond Premium, which is amortized over the term of the issued bonds (as either a "bond ladder" of term bonds, or as longer-term bonds, with annual sinking fund payments). The amortization of the premium is included as a factor in the calculated average coupon rate cited above.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1

Date Request Received: 7/7/21
Request No. DOE 1-2

Date of Response: 7/20/21
Witness: Larry D. Goodhue

REQUEST:

Re: Response to Staff Tech 1-15 and Updated Exhibit DLW-1, Page 3 (2020 CapEx): Based on the Company's response to Staff Tech 1-15, it appears that a total of $\$ 733,100$ in fit up costs were expended in 2020 related to the Company's move of its corporate office from Merrimack to Nashua. Further, it appears that these fit up costs will result in an increase of \$19,074 in annual property tax expense.
a) Please explain whether these amounts represent, i) the full 2020 fit up costs incurred by both PWW and its affiliates, or ii) PWW's allocated share of the 2020 fit up costs.
b) If the Company's response to (a) is (i), please provide a detailed explanation as to how PWW intends to ensure that its ratepayers are not paying a greater amount than necessary relative to these costs through the QCPAC until such time that new permanent rates are approved in its next general rate proceeding.
c) If the Company's response to (a) is (ii), please provide a detailed explanation of the allocation methodology utilized to apportion these costs amongst PWW and its affiliates. Please provide the detailed computations.

RESPONSE:

a) This $\$ 733,100$ amount represents the full incurred for the project, not just PWW's share. PWW funds paid for the entire cost of the fit-up, as the tenant in the building (as it was in the previous headquarters facility). The recovery of a portion of those funds is recovered through the Return on Assets portion of the Management Fee Allocation, over the useful life of these costs. This is consistent with the recovery of fit-up costs for the corporate headquarters for the Company, as included in the approved and consistently applied Management Fee Allocation.
b) This amount was fully funded out of DSRR 0.1 funds earned in 2020 from the Company's already approved permanent rates from its last completed general rate proceeding. As such, these costs will not create an amount for ratepayers that is included in the QCPAC surcharge at this time or going forward or be an element of the underlying factors (OERR/MOEF, DSRR and CBFRR) used to justify rates requested in the next general rate proceeding.
c) As stated in response (a) above, the allocation of these fit-up costs are included in the Company's Return on Assets (ROA) portion of the Management Fee Allocation between the operating companies of the Corporate Group, as of $1 / 1 / 2021$, as has been done in the past for any fit-up costs related to the previously occupied leased headquarters facility. This amount is subject to recovery from the companies as an amount subject to the rate of return calculation in that portion of the Management Fee Allocation ("MFA"), currently at a rate of return of 4.51%, and is then allocated to the companies in accordance with the other factors in the model for Tier 1 costs. The ROA calculation is based upon the Net Book Value of the underlying assets, as they are depreciated over their useful lives. Included in the full cost of fit-up are certain assets that have useful lives between 7-15 years, and as such the ROA on these assets included in the MFA will decrease each year as the assets are depreciated to maturity. Under the current, ROA for the full initial value of the fit-up costs, the amount shares between the companies is $(\$ 733,100 \times 4.51 \%=$ $\$ 33,062.81$). The manner in which all Tier 1 costs are allocated varies from month to month and are trued up on a year-to-date basis for each month leading up to the final year-end calculated values. The actual allocation dollar amounts vary each month (and each year), as they are allocated in accordance with the approved model, based upon actual: (1) pro-rata revenues, (2) total assets, (3) customers, (4) employees, and (5) square footage dedicated specifically vs shared, in the headquarters facility. As of current metrics through the month of May, the ROA portion of the MFA is 75.26% PWW, 20.28% PEU, 1.41% PAC and 3.05% to Pennichuck Water Service Company. It is important to note, however, that: (1) this is consistent with the approved methodology for the sharing of recovery on all assets owned by PWW, for which the benefit is shared by all other companies in the consolidated group, (2) the ROA Assets portion of the MFA is only one of several allocation methodologies/tiers within the MFA, as approved and consistently applied for costs borne, and (3) the direct cost of the leased facility (i.e. monthly lease payments) are shared pursuant to the MFA in the portion of the model that allocated operating expenses borne for which all of the companies directly or indirectly benefit, including the depreciation of these fit-up cost assets, as well as the impact of any property taxes on these personal property assets.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1
Date Request Received: 7/7/21
Date of Response: 7/20/21
Request No. DOE 1-3
Witness: Donald L. Ware

REQUEST:

Re: Updated Exhibit DLW-1, Page 3 (2020 CapEx): For each of the following 2020 capital improvements, please provide a detailed explanation as to why they are subject to a property tax assessment:

	Description	Cost	$\underline{\text { Tax }}$
a)	Ln 27: Replacement Equipment /Excavator Trailer	$\$ 17,917$	$\$ 511$
b)	Ln 28: Buyout Lease of HP T2530PS Large Format Printer	$\$ 4,995$	$\$ 142$
c)	Ln 41: Asset Management - GIS QA/QC ahead of NEW CMMS		
d)	Ln 50: Replace Engineering Pickup	$\$ 23,478$	$\$ 1,610$
e)	Ln 51: Replace Engineering SUV \# 34	$\$ 669$	
f)	Ln 128: CMMS replacement project*	$\$ 24,432$	$\$ 697$

(*Per Boisvert Testimony, Page 16 (Pg. 56), Lines 2-4, it appears this includes both software and hardware.)

RESPONSE:

a) Acct 341.00 - Transportation equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 3 to reflect that the Replacement Equipment/Excavator Trailer is not subject to property taxes.
b) Acct 340.10 - Office Equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 3 to reflect that the Buyout Lease of HP T2530PS Large Format Printer is not subject to property taxes.
c) Acct 347.11 - Computer Equipment-Hardware/Software is a taxable account based on RSA 83F, the Statewide Utility Tax. This account is reported as taxable based on Form PA-83. The Asset Management - GIS QA/QC ahead of the NEW CMMS project is booked to Acct 347.11, and therefore is reportable as taxable property.
d) Acct 341.00 - Transportation equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 3 to reflect that the Replace Engineering Pickup is not subject to property taxes.
e) Acct 341.00 - Transportation equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 3 to reflect that the Replace Engineering SUV \#34 is not subject to property taxes.
f) Acct 347.11 - Computer Equipment-Hardware/Software is a taxable account based on RSA 83F, the Statewide Utility Tax. This account is reported as taxable based on Form PA-83. The CMMS replacement project is booked to Acct 347.11, and therefore is reportable as taxable property.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1

Date Request Received: 7/7/21
Request No. DOE 1-4

Date of Response: 7/20/21
Witness: Donald L. Ware

REQUEST:

Re: Updated Exhibit DLW-1, Page 3 (2020 CapEx), Line 74 - MSDC payment to MWW\$166,347:

a) Please provide further explanation with regard to the basis for this particular line item and its inclusion for recovery under the QCPAC mechanism.
b) Please provide a detailed explanation with regard to how the transaction involving the payment of these MSDC charges was recorded on the books and records of the Company, and if there will be an annual amortization of these charges (and over what period of time).
c) In Commission Order No. 26,076 (November 17, 2017) in Docket Nos. DW 17-119 and DW 17-120, the Commission approved a new method by which the Company (and PEU) would collect the MSDC from individual customers upon their connection to the system rather than from the entire customer base as a whole. In that order the Commission commented, "Applying the MSDC to customers as they connect a new service line to a system that purchases its supply from Manchester Water Works, eliminates an expense shared by all customers and thereby mitigates any claim that the fee is unjust or unreasonable when applied to customers who do not take supply from Manchester Water Works." (See Page 4, Commission Analysis) Please explain how the Company's proposed inclusion of the MSDC in the QCPAC in this circumstance comports with Commission Order No. 26,076.

RESPONSE:

a) Per PWW's purchase water contract with Manchester Water Works (MWW), PWW must pay for used MSDC capacity which is based on the average highest two months of usage on a gallons per day (gpd) basis based on PWW's total usage from its metered connections with MWW. Since 2020 was a drought year, there was record usage. Prior to 2020, PWW had purchased 569,005 gpd of MSDC capacity. In 2020, PWW used 616,346 gpd in MSDC capacity resulting in PWW needing to purchase an additional $47,341 \mathrm{gpd}$ of capacity at $\$ 3.79$ per gpd or $\$ 179,421.94$. Since the approval of PWW's tariff which allowed it to collect MSDC from individual customers, PWW collected $\$ 13,076$ from new customers in accordance with Commission Order No 26,076 leaving a residual MSDC fee to be collected of $\$ 166,346$. The

MSDC is a source of supply cost and the Company included the cost of this fee as a regulatory asset and the cost of that asset is amortized over 20 years, the terms of the PWW/MWW purchased water agreement. Please see the Attachment Staff DR1-4 for the calculation of this fee as provided by MWW and verified by PWW.
b) The $\$ 166,347$ is recorded as a regulatory asset and it will be amortized over 20 years. Since the cash that was used to pay this asset was paid for by the Bonds sold on April 2, 2021, and the principal and interest associated with this Source of Supply Expense is proposed to be collected via the QCPAC, the amortization expense associated with this regulatory asset will be pro forma out of amortization expense in future rate cases and will not be collected as part of the MOERR.
c) The fees collected by PWW in accordance with Commission Order No. 26,076 were collected from new customers in the amount of $\$ 13,076$, and reduced PWW's MSDC payment to MWW from $\$ 179,421.94$ to $\$ 166,346$. The additional MSDC usage above and beyond that used and paid for by new customers was created by record usage by existing PWW customers during the summer months of 2020 that was a result of record outside usage in response to the drought in 2020. Since the $\$ 166,346$ was driven by existing customers, this expense is appropriately shared by all PWW's rate payers as it has been in past rate cases.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1

Date Request Received: 7/7/21
Request No. DOE 1-5

Date of Response: 7/20/21
Witness: Donald L. Ware

REQUEST:

Re: Updated Exhibit DLW-1, Page 3 (2020 CapEx), Line 102; Boisvert testimony Page 8 (Page 48), Line 23 to Page 9 (Page 49), Line 4 and Page 22 (Page 62), Lines 7-14:

a) The cost of media replacement in filters 5 \& 6 increased from an estimated $\$ 450,000$ in the $11 / 30 / 2020$ update to a final $12 / 31 / 2020$ price of $\$ 495,331$. Please indicate the reason for the increase.
b) How does the company determine when the carbon media is exhausted or needs replacement?
c) Is the media replacement put out to bid? Please explain.
d) Is the removed media landfilled? Regenerated? Please explain.
e) What factors or limits will determine the amount of each source (Merrimack River, Pennichuck Brook) the company will be able to use going forward?
f) Other than carbon media impacts, are there other differences in water chemistry or treatment costs associated with using one source v. the other? Please explain.

RESPONSE:

a) The $11 / 30 / 2020$ estimate should have been updated. The $\$ 450,000$ estimate was based on the most recent filter media changeout. When the bids to replace the media were received the low bid was $\$ 495,331$
b) Samples are gathered on a monthly basis and sent to an independent laboratory to determine certain parameters that indicate the removal capacity of the media. Comparing the results to industry standards and original specifications determines the time to replace media. Since we are also using the media for PFOA removal, samples for this contaminant are analyzed on a monthly basis to determine removal effectiveness.
c) Yes. The media replacement is put out to bid. There are two US suppliers of carbon, Calgon Corporation and Cabot/Norit. Calgon Corporation was the low bidder on the carbon replacement project.
d) Disposal of the removed media is the responsibility of the entity providing the replacement carbon and included in the cost of the carbon replacement project. PWW is not aware of whether the media removed from Filter's $5 \& 6$ was disposed or regenerated by Calgon Corporation. If Calgon regenerates the carbon it is for reuse only for non-potable water treatment applications.
e) Due to the New Hampshire Department of Environmental Services (NHDES) PFAS regulations, in particular the standard for Perfluorooctanoic Acid (PFOA) of 12 parts per trillion (ppt), the Company will use the Merrimack River as its primary source of water because the level of PFOA in the Merrimack River is substantially lower than that found in the Pennichuck Brook Water Supply. The level of PFOA in the Merrimack River supply varies from non-detect to 5 ppt . The level of PFOA in the Pennichuck Brook system varies between 11 ppt and 40 ppt . The use of the Merrimack River instead of Pennichuck Brook water will extend the life of the carbon (for PFOA removal) by a factor of about 4 times. The Company will only use the Pennichuck Brook water as a source of supply in the future would be if: 1) there is a contamination event in the Merrimack River, 2) there are mechanical problems or maintenance work that is being performed at the Merrimack River Intake that would preclude the use of the Merrimack River as a source of supply, or 3) the PFOA levels in the Pennichuck Brook Supply dropped to levels similar to those of the Merrimack River Intake..
f) The Merrimack River and Pennichuck Brook raw water supplies have very similar water qualities and the use of one supply versus the other does not increase or lesson the cost of treatment other than the cost of electricity. The Merrimack River supply requires electricity to deliver water from the Merrimack River to the Water Treatment Plant (WTP). The Pennichuck Brook supply flows by gravity into the WTP by gravity so no electricity is required. Additional electrical expenses associated with the use of the Merrimack River, as detailed in Mr. Boisvert's testimony, is offset several times by the cost savings created by less frequent Carbon changeouts required in the use of the Merrimack River Supply versus the use of the Pennichuck Brook, which are driven by the levels of PFOA in each supply.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

REQUEST:

Re: Updated Exhibit DLW-1, Page 4 (2021 CapEx), Line 35:

a) The Kessler Farm Tank Replacement cost appears to have increased substantially, from $\$ 3,328,000$ in the DW 20-020 11/30/2020 update to $\$ 4,000,000$ currently. Please explain.
b) Please provide a copy of the most recent tank inspection report.

RESPONSE:

a) The budget for the project was adjusted based on the bids received. The bid values were higher than the original estimates for the project (prepared in 2019). During 2020 the cost of many building materials doubled or even tripled in price. There were significant increases in the price of steel, concrete, and lumber, the primary building materials for this project, that could not have been foreseen when the initial project estimate was completed in 2019.
b) A copy of the October 17, 2014 report is attached to this response as Attachment DOE 1-6.

Pennichuck Water Works, Inc.

DW 21-023
2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-7
Witness: John J. Boisvert

REQUEST:

Re: Updated Exhibit DLW-1, Page 4 (2021 CapEx), Line 36: The cost of the Coburn Woods main replacement project appears to have increased from $\$ 1,188,000$ (as a 2022 project in DW $20-020$) to $\$ 1,855,000$ in the current docket. Please explain.

RESPONSE:

The amount of $\$ 1,188,000$ was the budget for the work on this project that the Company originally planned to complete in 2020. That budget included the installation of the watermain and services but not the final paving restoration. A late start in 2020 did not allow for much to be completed as winter conditions forced a shutdown of the project until the Spring of 2021. Final paving and site restoration were planned for 2021 with the cost for that work being the difference between $\$ 1,855,000$ and $\$ 1,188,000$ (or $\$ 667,000$). The Company intends to complete the water main installation and most of the site restoration in 2021. However, the pace of construction has been slowed due to the contractor encountering unmapped and poorly located buried utilities (primarily telecom and electric). It is likely that a portion of the project will be carried over into 2022. The Company will not be able to confirm the scope of work that will be complete this year until the fourth quarter of 2021.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date Request Received: 7/7/21
Date of Response: 7/20/21
Request No. DOE 1-8
Witness: John J. Boisvert

REQUEST:

Re: Updated Exhibit DLW-1, Page 4 (2021 CapEx), Lines 40-41: Please comment on the nature and purpose of the proposed Sweet Hill and Twin Ridge interconnections.

RESPONSE:

These two community water systems (CWS) are located in Plaistow, NH. Both systems have suffered from a shortage of supply either due to the failure of a well or depleted water levels in the aquifer. These failures required the trucking of water into each system from time to time. In addition, the Twin Ridge system has suffered from poor water quality, including elevated hardness, manganese, and sodium levels that have been the primary concerns. The Southern NH Regional Water System will allow the Town of Plaistow to convert its water distribution system from a fire suppression system into a potable public water system. The converted Plaistow distribution system is near Twin Ridge and Sweet Hill to cost effectively provide an interconnection to serve as both a redundant and supplemental source of supply. The NHDES has approved loan funding for the projects through the NH State Revolving Fund. The Company is in the process of completing the final applications to NHDES and will be filing a petition with the NHDOE for approval for the Company to accept the SRF loan. The petition will be filed during the third quarter of 2021.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

REQUEST:

Please indicate the current status of the following 2021 projects:
a) Kessler Farm tank replacement.
b) Coburn Woods main replacements.
c) Harris Dam improvements.
d) Supply Pond spillway improvements.

RESPONSE:

a) In construction. Used and useful date by December 2021
b) In construction. Due to the pace of construction which has been slowed due the contractor encountering poorly located utilities (telecom and electric) as well as private sewers, the project is expected to carry over into 2022 even the though most of the work will be completed in 2021.
c) Construction delayed due to environmental permitting and approvals by the NHDES Dam Bureau. Construction is expected to proceed in 2022.
d) Construction delayed due to environmental permitting and approvals by the NHDES Dam Bureau. Construction is expected to proceed in 2022.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-10
Witness: Donald L. Ware

REQUEST:

Re: Updated Exhibit DLW-1, Page 4 (2021 CapEx): The following proposed 2021 CapEx projects are indicated as not QCPAC eligible in 'Column H' of Updated Exhibit DLW-1, Page 4. However, the budgeted cost of these projects appear to be included in the anticipated bonding of 2021 CapEx to occur in 2022. Please explain.

Description
 Amount

a) Ln 37: Merrimack River Watershed Council (Grant Match)
b) Ln 63: Vehicle Replacement
c) Ln 64: Vehicle Replacement
d) Ln 70: Infoview Licenses
\$40,000
\$55,000
\$40,000
\$65,000

RESPONSE:

Of the projects listed above in a) through d) only the Merrimack River Watershed Council (Grant Match) found on Line 44 on Exhibit DLW-1, Page 4 should have been labeled as not QCPAC eligible. All the costs associated with projects listed in b-d above were included in the anticipated bonding to fund 2021 Capex. The Merrimack River Watershed Council (Grant Match) should not be included in the anticipated 2021 Bond Total as the cash for this project is being provided from 0.1 DSRR funds. The attached Exhibit DLW-1 has been corrected to reflect the changes noted above.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-11
Witness: Donald L. Ware, Jay Kerrigan

REQUEST:

Re: Updated Exhibit DLW-1, Page 4 (2021 CapEx): It does not appear that the municipal/state property tax rates indicated in 'Column O' of Page 4 of Updated Exhibit DLW-1 are in agreement with the municipal/state property tax rates indicated in 'Column O' of Page 3 of Updated Exhibit DLW-1 (2020 CapEx). Please explain.

RESPONSE:

The tax rates in "Column O" on Page 4 have been changed to reflect those detailed in "Column O" on page 3 the attached revised Exhibit DLW-1. I have also adjusted the rates in "Column O" on pages 5 and 6 so that all the tax rates match.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

REQUEST:

Re: Updated Exhibit DLW-1, Page 4 (2021 CapEx): Please explain why the following two significant projects budgeted for 2021 are indicated as not taxable in 'Column N' of Page 4 of Updated Exhibit DLW-1:

Description

a) Ln 35: Kessler Farm Tank Replacement
b) Ln 36: Auburn Woods (all side streets)

Amount
\$4,000,000
\$1,855,000

RESPONSE:

Both projects noted above should have been listed as taxable. The attached revised Exhibit DLW-1 has been revised to reflect those projects that are taxable.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1
Date Request Received: 7/7/21
Date of Response: 7/20/21
Request No. DOE 1-13
Witness: Donald L. Ware

REQUEST:

Re: Updated Exhibit DLW-1, Page 4 (2021 CapEx): For each of the following 2021 budgeted capital improvements, please provide a detailed explanation as to why they would be subject to a property tax assessment:

Description
a) Ln 21: Replacement Valve/vac trailer
b) Ln 22: Replacement Equipment Trailer
c) Ln 24: Valve Turner \& Vac Truck
d) Ln 60: Purchase new lab equipment
e) Ln 69: CMMS replacement project (Estimate)
f) Ln 80: CMMS PLL Implementation

Cost Tax
\$ 65,000 \$1,731
\$ 7,000 \$200
\$200,000 \$5,772
\$20,000 \$533
\$100,000 \$2,663
\$170,000 \$4,527

RESPONSE:

a) Acct 341.00 - Transportation equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 4 to reflect that the Replacement Valve/Vac Trailer is not subject to property taxes.
b) Acct 341.00 - Transportation equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 4 to reflect that the Replacement Equipment Trailer is not subject to property taxes.
c) Acct 341.00 - Transportation equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 4 to reflect that the Valve Turner \& Vac Truck is not subject to property taxes.
d) Acct 344.00 - Laboratory equipment is not taxable. This line has been changed in the attached revised Exhibit DLW-1, Page 4 to reflect that Purchased new lab equipment is not subject to property taxes.
e) Acct 347.11 - Computer Equipment-Hardware/Software is a taxable account based on RSA 83F, the Statewide Utility Tax. This account is reported as taxable based on Form PA-83.

CMMS replacement project is booked to Acct 347.11, and therefore is reportable as taxable property.
f) Acct 347.11 - Computer Equipment-Hardware/Software is a taxable account based on RSA 83F, the Statewide Utility Tax. This account is reported as taxable based on Form PA-83. CMMS PLL Implementation project is booked to Acct 347.11, and therefore is reportable as taxable property.

Pennichuck Water Works, Inc. DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-14
Witness: John J. Boisvert

REQUEST:

Re: Boisvert testimony, Page 8 (Page 48), Lines 13-15: Please indicate the nature of the "emergency generator connection" for the third raw water pump.

RESPONSE:

The emergency generator connection is to provide a means to power one of the three 350 horsepower pumps at the Merrimack River Raw Water Pumping Station during an extended loss of power at the station. The emergency could be the loss/failure of the existing transformer feeding the station or the failure of the electric transmission lines leading to the station. The project will provide the ability to connect a generator to the station for planned maintenance to the electric lines or the existing transformer to keep the station in service. The major component of the work is the installation of a manual transfer switch and associated electrical equipment, wiring and conduits.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1

Date Request Received: 7/7/21
Request No. DOE 1-15

Date of Response: 7/20/21
Witness: Donald L. Ware

REQUEST:

Re: Boisvert testimony, Page 8 (Page 48), Lines 17-23: Please provide the supporting calculation for the comparison of raw water pumping cost to carbon media change-outs.

RESPONSE:

The Company transitioned from using Pennichuck Brook to the Merrimack River as the primary source of for the Nashua Core water system. The transition was driven by the presence of the contaminant perfluorooctanoic (PFOA) above the drinking water standards set by the NHDES in the Pennichuck Brook. The level of PFOA in the Merrimack River is below the drinking water standard. Though the granular activated carbon (GAC) media in the filters at the treatment facility adsorbs (collects) PFOA such that filtered water has PFOA below drinking water standards if not below laboratory detection, the GAC does not perform this way indefinitely. The GAC essentially begins to fill up and cannot hold or collect additional PFOA, resulting in the breakthrough of PFOA leading to increased concentrations of PFOA in the treated water. Without replacement of the GAC, the concentrations will rise to the levels found in the raw water. If Pennichuck Brook was 100% of the source, the concentration would rise to the level which is consistently above the NH drinking water standard resulting in a water quality violation. The same is true when the Company uses the Merrimack River but, the concentrations found in the Merrimack River water is below the PFOA standards. So, even if breakthrough of PFOA were to occur, it would breakthrough at a concentration below the drinking water standard. Because the Company can only pump approximately 22 million gallons per day (mgd), and there are times when customer demand exceeds 22 mgd requiring a blend of Pennichuck Brook and Merrimack River raw water. That blend of water may or may not be below the drinking water standard depending of the flow from each source and the concentration from each source. The Company must maintain enough adsorptive capacity in the GAC media to ensure no matter what raw water source (or combination) is being used, that the filters will produce water well below the standards. GAC media replacement is the way compliance is ensured. Monitoring and tests allow staff to assess the current conditions of the GAC media such that media can be replaced at the correct times. Neither before the GAC is used up or too late when breakthrough could occur.

Prefaced on the paragraph above, there is not a defined rule of when the GAC media requires replacement. It is a function of flow (demand) and the concentration of PFOA being filtered. Both factors have their own influencing variables and thus are variable too. Based on sampling of Filters 1 and 2 over the past 2.5 years, the PFOA broke through the carbon at about two years treating a combination of Pennichuck Brook and Merrimack River Water with an average PFOA
concentration of about 11 ppt . Based on an average PFOA concentration of 18 ppt in the Pennichuck Brook Supply, it is expected that the carbon would last about 1.5 years before PFOA breakthrough if the Company used the Pennichuck Brook Supply exclusively. The average PFOA in the Merrimack River is well below the NHDES standard; therefore the breakthrough of PFOA would not drive the carbon replacement. The replacement of the carbon when using the Merrimack River source water will likely be driven by taste and odor. Since the Merrimack River has not been used exclusively until 2020, it is not known how long the carbon will last in treating taste and order. Since the indicators of taste and odor are less prevalent in the Merrimack River than in Pennichuck Brook, it has been assumed that the carbon will last at least 7 years. As taste and odor is being removed over time, the PFOA in the Merrimack River water will also be adsorbed by the carbon. Based on an average of 4 ppt of PFOA in the Merrimack River Water, it is estimated that the carbon adsorption of PFOA will last about 4.5 times longer than that of Pennichuck Brook so the projected carbon life using the Merrimack River will be about 6.75 years.

Based on these facts, the Company estimates that the overall cost of treating (carbon plus electricity) the Merrimack River Water will be about 2.4 times less than treating the Pennichuck Brook water. The $1 / 5^{\text {th }}$ reference in Mr. Boisvert's testimony was a comparison of carbon replacement costs vs. extra electricity and did not include the carbon replacement cost when using the Merrimack River. Please see Attachment DOE 1-13 for a detailed set of calculations supporting the numbers discussed above.

Pennichuck Water Works, Inc.

DW 21-023
2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1
Date Request Received: 7/7/21
Date of Response: 7/20/21
Request No. DOE 1-16
Witness: John J. Boisvert

REQUEST:

Re: Boisvert testimony, Page 10 (Page 50), Lines 12-13:
a) Please provide an updated figure for the total cost of mains replaced in 2020.
b) Please indicate the total number of feet of mains replaced in 2020.

RESPONSE:

a) The total cost was $\$ 1,538,500$
b) 4,237 linear feet.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-17
Witness: John J. Boisvert

REQUEST:

Re: Boisvert testimony, Page 11 (Page 51), Lines 9-10 and Staff Tech 1-11: The three projects referenced in the response appear to be only a portion of the main replacements proposed for 2021. Please clarify, and indicate the total cost of mains currently proposed to be replaced in 2021.

RESPONSE:

They were the only planned water main replacements when the Petition was filed. The other watermain replacements listed in Exhibit DLW-1, page 4, lines 28-33 were completed in 2020 with only restoration and paving scheduled for 2021.

The two projects planned for 2021, Balcom Street and Euclid Avenue, are going to be deferred to 2022 and replaced with water main replacements associated with City of Nashua Sewer project and a NHDOT project in Amherst. The watermain replacements are associated with the following streets Faxon Street, Faxon Avenue, Kendrick Street, and Miami Street in the City of Nashua. The NHDOT project is a reconstruction of a section of Route 101A in Amherst and required the relocation/replacement of approximately 1,500 linear feet of 24 -inch diameter water main. The budget for these projects will come from projects that are being deferred to 2022 including Balcom Street and Euclid Avenue mentioned above.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-18
Witness: John J. Boisvert

REQUEST:

Re: Boisvert testimony, Page 14 (Page 54), Lines 12-22:
a) Please provide a copy of the permit to construct the deep-water intake, or other documentation indicating the requirement to complete the Modified Source Water Protection Plan.
b) Is the Plan being prepared internally or externally? Please explain.
c) If externally, how was the contractor chosen?
d) When is the Plan expected to be completed?

RESPONSE:

a) A copy of the NHDES letter dated January 19, 2021 approving the design of the project is found in Attachment DOE 1-18. The section of the letter requiring the Modified Source Water Protection Plan (MSWPP) is highlighted.
b) The MSWPP is being completed with the assistance of a consultant and with internal staff resources.
c) The consultant (Geosyntec) was selected based upon their qualifications.
d) On or about December 1, 2021.

Pennichuck Water Works, Inc.

DW 21-023
2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1
Date of Response: 7/20/21
Request No. DOE 1-19
Witness: Donald L. Ware

REQUEST:

Re: Boisvert Testimony, Page 16 (Page 56), Lines 21-22 and Page 22 (Page 62), Lines 7-14; Updated Exhibit DLW-1, Page 3, Line 102:
a) Based on Mr. Boisvert's testimony, it would appear that the currently anticipated useful life of a carbon media filter is approximately four years. Please confirm.
b) Please indicate the recorded service life(s) and annual depreciation expense for 'Carbon media changeout-filters 5\&6' in the amount of $\$ 495,331$ indicated on Line 102 of Page 3 of Updated Exhibit DLW-1.

RESPONSE:

a) The projected four year carbon life is based on the fact that the current media was treating Pennichuck Brook water with high levels of PFOA during the summer of 2020. This was done because one of the two original raw water pumps in the Merrimack River Raw Water Station had not been rebuilt and the new third raw water pump had not been installed yet. The use of Pennichuck Brook water for about 35\% of the raw water supply during the Summer of 2020 which resulted in the capacity of carbon in filters being used more quickly than if all the water had come from the Merrimack River. The Company anticipates an average filter life of about 7 years (see response to DOE 1-15) now that the Merrimack River raw water supply can meet almost all of Pennichuck's raw water supply needs, as a result of the rebuild of the two existing pumps and addition of the third river pump.
b) For depreciation expense purposes, the Company recorded the service life of the Carbon media as 7 years which would result in an annual depreciation expense of \$70,762.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-20
Witness: John J. Boisvert

REQUEST:

Re: Boisvert Testimony, Page 20 (Page 60), Lines 9-10: With regard to '2022 Vertical Projects', Mr. Boisvert states that, "The replacement of the Milford Booster Station is also anticipated in 2021." (Emphasis added.) Please confirm that the replacement of the Milford Booster Station will, in fact, occur in 2022 per Updated Exhibit DLW-1, Page 5, Line 47.

RESPONSE:

Design of the Milford Booster Station will be undertaken in 2021 and replacement will commence in 2022. The proposed land upon which the replacement station is to be located is owned by the NH Department of Transportation (NHDOT). The NHDOT has advised that the approval process for them to grant the required easement could take 6 to 12 months pushing construction to 2022. The cost to construct this station will be borne by the Milford Water Department via its fixed annual payment which will be determined as part of an upcoming Cost of Service Study and petition to the DOE to approve a new PWW-Milford Water Department Special Purchase Water Contract to be submitted later this year and planned to go into effect in March of 2022.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1

Date Request Received: 7/7/21
Request No. DOE 1-21

Date of Response: 7/20/21
Witness: Donald L. Ware

REQUEST:

Re: Proposed 2021 QCPAC Budget:

a) Does the Company agree that the annual 'current year' capital budget, which in this filing is 2021, should be inclusive of a budget line item and amount pertaining to the anticipated interest on short-term borrowings, i.e. the Fixed Asset Line of Credit (FALOC), incurred during the construction / acquisition of the current year CapEx, that will be included in the subsequent year bonding? Please explain.
b) Please provide the short-term interest amount that the Company currently anticipates will be incurred relative to its 2021 CapEx. Please provide the detailed calculation(s).

RESPONSE:

a) Yes.
b) It is not possible to accurately project the expected short-term interest amount that the Company currently anticipates it will incur in regard to its 2021 Capex necessary to provide an accurate "detailed calculation" due to:

1. Project timing which impacts when FALOC funds will be drawn. The timing and magnitude of cash draws impacts both the interest expense on the borrowed funds and the amount of expense associated with the unused fee portion of the FALOC.
2. Final project and final project cost that will completed and used and useful at the end of the year.
3. The interest charged on FALOC draws varies with LIBOR. The Company has no way to project what the daily LIBOR rate will be.
4. When the bonds will be sold in 2022 to pay off the FALOC.

With the qualifiers noted above, the Company has included a very high-level projection, with detailed calculations of the interest it projects will be incurred on the FALOC, based on current project statuses and anticipated project expenditure draws, through April 4, 2022 (the estimated date for the sale of the 2022 Bonds used to pay
off the 2021 FALOC borrowings). Attachment DR1-21 shows the actual FALOC draws to through 7/8/2021. FALOC draws are typically made once a month, after the close of the previous month's financials. Please note that the July FALOC for June's capital expenditures has not been made so the draw shown on July 21 is an estimate. The attached estimate starts at the current FALOC borrowed balance of $\$ 2,076,335$ and then projects out additional monthly FALOC draw amounts based on a current estimated total PWW 2021 Capex expenditures of $\$ 10,564,200$. As noted above, the timing of these projects and final expenditures associated with projects is still very much in flux. Please note that the Harris Dam and Supply Pond projects have been delayed from 2021 to 2022 due to a delay in permitting approvals. Correspondingly, the City of Nashua has added sewer replacement projects to its list of calendar year 2021 work that were not known in early 2021, and as such the Company has added about $\$ 1,000,000$ in projected water main replacement work. Since the scope of the City projects are not well defined at present, the $\$ 1,000,000$ is a very high-level placeholder estimate. The final expenditures and timing of these watermain expenditures is entirely dependent upon the final scope and timing of the City sewer replacement projects. The attached detailed calculations project the interest expense on the FALOC at $\$ 128,379$.

Pennichuck Water Works, Inc. DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-22
Witness: John J. Boisvert

REQUEST:

Re: Updated Exhibit DLW-1, Page 5 (2022 CapEx), Line 47: The cost of the Milford Booster Station project appears to have increased from $\$ 660,000$ (as a 2021 project in DW 20-020) to $\$ 800,000$ in the current docket. Please explain.

RESPONSE:

The February 2020 estimate was increased based on the increases in construction costs of approximately 9\% (Engineering New Record Construction Cost index) since the project was originally estimated in 2019, along with the addition of a third pump to ensure full redundancy to meet the required demand if one pump were out of service. As noted above, the cost of this station will be borne by Town of Milford. PWW will bond for the project but Milford, via its fixed annual payment, will pay 1.10 times the final principal and interest associated with the project based on the final cost of the project.

Pennichuck Water Works, Inc.
DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1
Date Request Received: 7/7/21
Date of Response: 7/20/21
Request No. DOE 1-23
Witness: John J. Boisvert

REQUEST:

Re: Extent of engineering resources available to the company:

a) Please indicate generally what engineering services are provided in-house and what engineering services are contracted out.
b) Please indicate the number of people providing engineering services within the company and the job title of each.
c) Please list all engineering studies or reports produced either internally or externally in the past five years in relation to the Nashua core system, including title, responsible entity/author, year and cost.

RESPONSE:

a) The Company generally performs all engineering services in-house that fall within the expertise, technical training and professional experience of the engineering staff. Including the following:

- Water main replacement/addition planning and design
- Hydraulic modeling
- Hydrologic monitoring and analysis of source waters
- Water quality monitoring of source waters
- Invasive species survey and mitigation within sources waters
- Well design, monitoring, and assessment
- Booster station planning, evaluation, and design
- Treatment process planning, evaluation, and design
- Construction Management including design, bidding, inspection and project documentation.
- Private (developer main extensions) construction management and inspection
- New customer service design and inspection (residential, commercial, and industrial) including domestic service, fire service, and cross connections
- Technical support to the Water Supply, Distribution, and Revenue and Customer Operations Department
- Environmental permitting including source water protection, conservation reporting, water use reporting, and groundwater monitoring and analysis.
- Geographical Information Systems (GIS) design, implementation, maintenance, management, and application development.
- Management and technical support for global positioning system (GPS) surveying applications.
- Computerized Maintenance and Management System (CMMS - "Cityworks") implementation, design, development, administration, management, training, and support.
- Asset Management administration, development, utilization, management, and support.
- Long term capital planning.
- Regulatory support (NH DOE rate, financing, QCPAC, etc.)
- NHDES SRF and NH Drinking Water and Groundwater Trust Fund financing (applications/requests).

The Company contracts professional services when the technical requirements for those services are not part of the in-house staff qualifications or the level of complexity requires more experience than in-house resources are comfortable providing (the Merrimack River Intake design for example). In addition, the Company may outsource engineering services on larger projects where the Company simply does not have the staff resources needed to complete a project in a timely manner (the Water Treatment Facility upgrades in 2006-2011). Outside services recently used to support in-house engineering efforts include:

- Professional Electrical Engineering services
- Professional Architectural Services
- Professional Structural Engineering Services
- Professional Geotechnical Engineering Services (soils and foundations)
- Professional Instrumentation and Controls Engineering Services (SCADA)
- Professional Mechanical Engineering Services (building applications including plumbing, HVAC and worker safety)
- Professional Geology and Hydrogeology Services (new well siting, geophysics)
- Professional Civil/Site Engineering Services (local planning board permitting)
- Wetland Scientist Services (wetlands mapping and permitting)
- Real Estate Appraisal Services (easement and land acquisition)
- Professional Land Surveying Services (boundary and topographic mapping)
b) The following table identifies the members of the Engineering Department and their positions. There are 15 full time staff in the department. In the summer, the department may increase by 2 to 4 temporary summer engineering interns when the volume of field work (monitoring) becomes more intensive.

Department	Position Title	First Name	Last Name
Engineering	Engineering Program Administrator	Kelsey	Dillon
Engineering	Distribution Engineer (E.I.T.)	Ryan	Houle
Engineering	Construction Services Manager (P.E.)	Mark	Filion
Engineering	CAD/GIS Technician	Eric	Levesque

Engineering	GIS Technician	Brenden	Bowen*
Engineering	Engineer (E.I.T)	Casey	Harding*
Engineering	Engineer (E.I.T)	Hannah	Marshall*
Engineering	Environmental \& Operations Data Analyst	Ashley	Piper*
Engineering	Distribution Engineering Manager (P.E.)	Peter	Tedder
Engineering	Engineering Business Analyst	Dawn	Lavacchia
Engineering	Chief Engineer (P.E.)	John	Boisvert
Engineering	Engineering Construction Manager	David	Levasseur
Engineering	Engineering Construction Manager	John	Gureckis
Engineering	Engineering Construction Manager	Paul	Dubowik
Engineering	Engineering Service Manager	Richard	Philbrook
Engineering	GIS Administrator (G.I.S.P.)	Jay	Guarneri
Engineering	CAD Technician	Maurene	Pepin
*Former PWW interns			

c) Projects and studies are completed primarily in-house and do not usually result in a formal report in the classical sense. Evaluations performed using outside consultants generally do if the consultant performed most of the analysis. There are times when the Company works collaboratively with a consultant. In this case the consultant is called upon to provide specific expertise at various times during the evaluation.

Year	Title	Status	Responsible Party	Cost* *
$2020-$				
2021	AWIA - Risk and Resiliency Assessment, Nashua Core	Regulatory requirements are complete ongoing detailed assessments	CDM Smith (Consultant)	$\$ 60,000^{*}$
$2020-$				
2021	AWIA - Emergency Response Plan, Nashua Core	Regulatory requirements are complete ongoing detailed assessments	CDM Smith (Consultant)	$\$ 45,000^{*}$
$2020-$				
2021	Merrimack River Modified Source Water Protection Plan	In Progress Merrimack River Safe Yield Evaluation	Geosyntec (Consultant)	$\$ 98,200^{* *}$
2018	Complete	Tighe \& Bond And	$\$ 45,680$	

2014	Kessler Farm Tank Inspection	Complete	Tank Industry Consultants	$\$ 7,985.00$
2014	Retired Pumping Station Hazardous Materials Evaluations for Demolition	Complete	Aries Engineering	$\$ 15,000$

* These projects have achieved the regulatory objectives - detailed assessments of action items ARE ongoing. Cost are approximate as internal labor is not included.
** Project will be complete in 2021
Many of the assessments and evaluations performed by the Engineering staff are associated with the design and construction of ongoing capital improvements and infrastructure replacement. The value of the projects that the Engineering Department supports each year varies but, is in the range of $\$ 8,000,000$ and $\$ 16,000,000$ depending upon the year (not including developer and other private works provided to the Company) and the type of projects completed in that year.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge Responses to DOE Data Requests -Set 1

Date of Response: 7/20/21
Request No. DOE 1-24
Witness: Donald L. Ware

REQUEST:

Re: Clearing Snow from Hydrants

What entity is typically responsible for clearing snow from hydrants in the various Pennichuck Water, Pennichuck East and Pittsfield systems? Do any written agreements exist is this regard? Please explain.

RESPONSE:

Except for the hydrants in the City of Nashua, Pennichuck Water, Pennichuck East and the Pittsfield Aqueduct Company clear the snow from the public hydrants in each community where public hydrants exist. There are no written agreements in this regard. The Company has always cleared the snow from the non-Nashua hydrants and recovered the expenses associated with clearing snow from hydrants in each rate case as an operating expense. This has been the Company's mode of operation for as long as I have been employed at the Company (Since April 1995). The City of Nashua has its fire department clear the hydrants and have for as long as I have been with the Company. The Nashua Fire Department (based on word of mouth) took over clearing its hydrants of snow in the mid 1980's when the then newly appointed fire chief decided it would be good exercise for the fire fighters, as well as help familiarize the fire fighters with the location of the hydrants.

Pennichuck Water Works, Inc.
 DW 21-023

2021 QCPAC - Qualified Capital Project Adjustment Charge
Responses to DOE Data Requests -Set 1
Date Request Received: 7/7/21
Date of Response: 7/20/21
Request No. DOE 1-25
Witness: Donald L. Ware

REQUEST:

Re: Boil Water Orders

If the company were to experience a boil water order affecting, for example, the entire northwest high pressure system and lasting several days including a weekend, please indicate:
a) The range of anticipated company responses including customer notification efforts.
b) What company personnel would be involved.
c) How many customers would be affected in this portion of the system.
d) Who would be responsible to notify customers in Milford.
e) What such an event might cost, including sampling, testing, delivery of notices, personnel time, etc.
f) Have any Pennichuck companies had boil water orders in any of their larger systems in the past few years? If so, please indicate year and location.

RESPONSE:

a) The Company's Emergency Action Plan would have the Company CEO convene a meeting of the Pennichuck Corporation Emergency Management Team (PCEMT). That team would establish the following:

1. Quickest and most efficient way to get the message out to its customers. The number of customers that receive water service in the Northwest system is about 3,700 . The Company, based on the number of customers to be notified, would:
i. Use its automated customer notification system which has text, phones call and email capabilities. A short message would be put together and sent to customer via text, phone call or email telling customer not to consume or cook with the water and to go to the Company's website for more information. The company has contact information for about 92% of its customers (although some of that information is likely dated). Dependent upon the Company's phone and computer systems use at the time of the outbound noticing it would be expected that about 1,000 to 1,500 notifications would be sent out per hour
so it would be expected that it would take between 2-1/2 to 4 hours to notice all customers where we had customer contact information.
ii. The Company's website would be updated on the main page with more detailed information regarding the boil order and what customers should do in response to the boil order.
iii. The Company's Facebook page would get a post with the same message as the Company's website.
iv. The Company would directly call its "critical" customers located in the Northwest system as flagged in our Munis customer service software. Critical customers include, but are not limited to Schools, Medical facilities, Restaurants, and Special Contract customers, such as the Milford Water Department. The Company would make these calls using all available customer service representatives.
v. The Company would immediately notify the Mayor's office in Nashua, as well as the Nashua Health Department.
vi. The Company would reach out to local news media (press, radio, TV) via a press release from its CEO.
vii. Post its electronic sign boards (it owns two) at the primary highway entrances into the Northwest system, the off ramps from Exits 7 and 8 off the Nashua Turnpike.
b) The following staff would be involved in the response:
2. The PCEMT staff consisting of the CEO, the COO and all Senior Managers at the Company.
3. Customer Service staff to make calls to critical customers and to handle inbound calls. For a notification of this size there would probably be at least 6 Customer Service staff brought in to work the phones, get website and Facebook posting completed.
4. Field Staff would post message signs and begin flushing hydrants in an effort to clear potentially contaminated water from the system. There could be 3 to 4 field staff.
c) There are about 3,700 non-fire related connections in the Northwest system, including connections to the Town of Milford water system and the Merrimack Village District water system.
d) PWW would notify the Milford Water Department and the Town of Milford would be responsible for notifying its own customers.
e) The Company would not be comfortable projecting the total cost of getting a notification completed and reaching a point where the boil order was rescinded by the NHDES. The goal would be to notify all parities as quickly as possible and to work on locating the potential source of the e-coli (if possible) and to see that the system is cleared of any contaminated water and any bacteria testing required by the NHDES is completed as quickly as possible.
f) The Pennichuck Company's last boil water order was issued in September of 2020 for the Gage Hill CWS, located in Pelham, with 27 residential customers. The prior boil order was issued in one of the Pennichuck Company's systems in 2016 for the Forest Ridge CWS, located in Exeter, with 52 residential customers.

The Pennichuck Companies have not had a boil water order in any of its water systems with more than 300 customers during my 26+ years at the Company.
Principal and Interest Coverage Requirement
Dw19-084 Principal and Interest Revenue Requirement
DW19-084 Principila and Interest Revenue Requirement
DW1-084 Revenue Requirement
Dw1-084 Revenue Requirement les Ohther Revernues
DW19-084 Revernue Requirement less Ohter Reverues less Fixed Special Contract Revernues
Percent RCPAC Surcharge (9)
Cumulative QCPAC Surcharge (13)
Cumulative QCPAC montly incerase in average single family residential bill.

Approved DW19-084Revenues perOrder\#		QCPAC For 2019		
s	7,29,032		s	
s	21,29,618	(1)	s	416,593
s	6,17,477	(2)	s	854,42
	1.10	(3)		
s	6,794,124			
s	35,819,74			
s	35,399,062	(12)		
s	34,722,18	(8)		
s	55.65			

$\begin{gathered} \text { QCPAC Surcharge } \\ \text { for } 2020 \text { Capital } \\ \text { Additions } \end{gathered}$			QCPAC For 2021 Capital Additions pro forma	QCPAC Surcharge for 2021 Capital Additions			QCPAC For 2022 Capital Addition pro forma			$\underset{\substack{\text { QCPAC Surcharge } \\ \text { for } 2022 \text { Capital } \\ \text { Addition }}}{\text { and }}$	
s	7,729,032		s -		s	7,29,032		s		s	7,29,032
s	21,86, 294		285,917	(4)	s	22,154,211	(4)	s	240,28	s	22,394,509
s	7,382,314		67,,516		s	8,058,830		s	551,53	s	8,610,333
	1.10					1.10					1.10
s	8,120,546				s	8,864,713				s	9,471,360
s	37,71, 71				s	38,74,956				s	3,594,07
s	37,297,159				s	38,37,244				s	39,174,194
s	36,690,716	(8)			s	37,720,800	(8)			s	38,567,751
	1.56\%					2.6\%					2.43\%
	5.46\%					8.42\%					10.85\%
s	3.04				s	4.68				s	6.04
s	58.69				s	60.34				s	61.69

	$\begin{aligned} & \text { or } 2023 \\ & \text { ditions } \end{aligned}$ ma	QCPAC Surchargefor 2023 Capital Additions	
		s	7,729,032
s	257,122	s	22,651,621
s	56,586	s	9,178,918
			1.10
		s	10,096,810
		s	40,47,462
		s	40,056,750
		s	39,40,307
			2.54\%
			13.39\%
		s	7.45

year bond wist ineterest rate of
$\stackrel{32}{32800}$

Pincipal and interest coverage of 1.10 is sa saprovecd in DW16.806.
(4) RCPAA operating expeneses are based on the property yxes for used and usefulp pant added during the year

Impact on Single Family Residential Home:

${ }^{\text {DW19-084 }}{ }_{24}$

$s_{\substack{12 / 31 / 2019 \\ 477.40}}$

me/Desem	Proiect Deseripion	Work oratert	mandig Doseke No .	NHpuc order No.	Dine ontruc order	\pm		Estimated Project Cost as of $11 / 30 / 2020$		Communiy	Taxale		$\begin{array}{\|c} \text { QCPAC Eligible } \\ \text { Property Tax } \\ \text { Expense } \end{array}$	
$\frac{N}{\text { Nesestices (d) }}$	Sinder			$\frac{25,101}{20,101}$	$\frac{22 / 2018}{2 / 20018}$	$\frac{50.0}{10.0}$								
Hentin			${ }^{\text {DWVTI } 1 \text { 18 }}$	22,101	${ }_{\text {2/22018 }}$	60,00	${ }_{\mathrm{V}}^{8}$	\%s,	41,401	Vantios	$\mathrm{Y}_{\text {Yes }}$			
		12×13 wothordse	${ }_{\text {DVlV7. } 183}$	22,101	${ }^{2 / 2 / 2018}$	40,om	${ }^{\mathrm{Ves}}$	40,000	4, 4, 89	Various	${ }_{\text {Yes }}$	${ }^{284}$		
					$\frac{22 / 27218}{2 / 29018}$		$\frac{\mathrm{Ycs}}{\mathrm{Vcs}_{\text {ctem }}}$	$\frac{5}{51.0000}$	${ }^{\frac{5}{5}}$				2.68	
				$\underbrace{\frac{28,0101}{20,101}}$				6.356	${ }_{6,368}$				${ }_{181}$	Imumedinom tome
Replecmentutulir Truk		20069	DV77.183	26,01	2/2/2018	70,00	Y_{se}	70,000	6.99	Necrimak	No	22.5		
Reflecenemutili Truk					$\underbrace{\frac{2 / 272018}{2(2) 2018}}$			7.a,0	(6895	$\frac{\text { Neremake }}{\substack{\text { Numimak }}}$	$\xrightarrow{\text { No }}$	${ }_{\text {che }}^{285}$		
		n/a	DVIT-183	26,101	${ }^{2 / 2 / 2018}$	10,00	${ }_{\text {rse }}$			${ }^{\text {Necrimack }}$	No	${ }^{285}$		
		$\frac{200476}{n / 3}$		$\frac{26,01}{2,0101}$			$\frac{Y_{\text {ces }}}{Y_{\text {cese }}}$	${ }^{140,000}$	s $\quad 72926$	$\sum_{\text {Nectimak }}^{\text {Nerrimat }}$	¢	${ }_{\substack { 285 \\ \begin{subarray}{c}{285{ 2 8 5 \\ \begin{subarray} { c } { 2 8 5 } } \\{\text { 28, }} \\{\hline}\end{subarray}}$		
		$\frac{\mathrm{n} / \mathrm{s}}{\text { n/a }}$		(e,	$\frac{2 / 2 / 2018}{2 / 20098}$		$\frac{V_{c s}}{V_{\text {cosem }}}$			$\frac{\text { Nutrimak }}{\substack{\text { Nerimak }}}$	$\frac{Y_{\text {cse }}}{Y_{\text {ces }}}$	${ }^{28}{ }^{28}$		
					2/2/2018	$\xrightarrow{\text { L2, } 2 \text { ane }}$		${ }^{12} 5350$	${ }_{15,50}$	${ }_{\text {Nectimad }}$				
		$\frac{200063}{}$	${ }_{\text {DW172-183 }}$	2,010	2/2/2018			10.41	,	$\frac{\text { Nersimec }}{\text { Nerimect }}$	$\frac{Y_{\text {cos }}}{Y_{\text {cos }}}$	- 285	${ }_{28}^{88}$	
Remen		$\frac{207556}{200858}$		$\substack{\text { 26, } 101 \\ 20,101}$	$\frac{2 / 2 / 2018}{2 / 2 / 2018}$			${ }_{\text {1, } 2,575}^{6,94}$	${ }_{\substack{1,977 \\ 4.955}}$	$\frac{\text { Nerimek }}{\text { Neremek }}$	${ }_{\text {No }}^{\text {No }}$			
		n/a	DV17.183	,109	$2 / 2 / 2018$	s8.000	${ }_{\text {Vosem }}$			Natam	$\mathrm{Y}_{\substack{\text { res }}}$	27.1		Dotered
							$\frac{Y_{\text {ces }}}{Y_{\text {cose }}}$			$\frac{\text { Nathas }}{\text { Nathe }}$	(tas	chi.	$\underbrace{231}_{2,515}$	
		${ }_{\text {2003 }}^{2}$		$\frac{\text { DVGGIP }}{\text { DWCITP }}$		$\xrightarrow{125,500}$	$\mathrm{V}_{\text {cosem }}$	$\frac{135000}{1250000}$	${ }^{125.565}$	Nathas	Yes	${ }^{27713}$		
				${ }_{26,101}^{2010}$	${ }^{2 / 2 / 2018}$	30,00				Natham		${ }_{\text {ckin }}^{\text {27.3 }}$		Deferred
	Remper	20038		20,101	${ }_{\text {2 }}^{2 / 2 / 2018}$,			10.58	Nastue		${ }^{277.15}$	287	
		2000380		22.247	${ }_{5 / 3 / 22019}$	${ }^{140,355}$	Y_{co}	122,109	${ }^{40,975}$	Necrinack	Ye		4 4,03	
		${ }^{2000380}$	D(17) 7 [85	2 2, 01	2/2mans	221.05	${ }_{\text {Yes }}$	20.00		Necrinack		${ }^{285}$		
Rephace Kesele Fram boosere pump pratage		${ }^{2000389}$	Dw177.183	${ }^{26,101}$	$21 / 2018$	$7_{5,000}$	Yos	${ }_{188,00}$	${ }^{190,9011}$	Nathan	yos	27.13	5.179	
		202025	DN17/183	26,101	2/2/2018	${ }^{20,000}$	ys_{6}	220,00	117274	Varous	No	${ }^{2845}$		
Aser				$\frac{26,101}{20,011}$	$\frac{2 / 2 / 2018}{2 / 20018}$		$\frac{Y_{\text {cose }}}{Y_{\text {cose }}}$			$\frac{\text { Nerinel }}{\text { Natatue }}$		${ }^{20.52}$,	
		${ }^{\text {S }}$				Stion		,		Nathe	Yes	${ }_{\text {che }}^{27.1}$, 4.4	,
	(ememe													Idudd in rove
				$\frac{26,100}{20,01}$		$\frac{220,000}{88,000}$		$\frac{2050}{\substack{10,00}}$	${ }_{128,87}$	$\frac{\text { Nathas }}{\text { Natha }}$		${ }^{2773}$	4.96	
		201229	Dw17.183	26,101	2/2/2018	20,00	Yos	144,000	- 149770	Ammext	No	${ }^{323}$		
Kescref ram Touk Replecemort		200379	0.1. Dskr			${ }^{3}$ 385,, 00	No	¢0,000	${ }_{65,161}$	Nsatum	No	52		
	${ }^{\text {a }}$	${ }^{\frac{206065}{}}$		${ }_{\substack{\text { 2, } \\ 20.0101}}$		$\xrightarrow{\frac{3}{3}, 5000}$	$\frac{Y_{s}}{Y_{\text {cesem }}}$		${ }_{\substack{23,40 \\ 24.422}}^{\text {a }}$	$\underbrace{\substack{\text { Nerrmaxd }}}_{\text {Necrimak }}$	${ }_{\text {No }}^{\text {No }}$	(tars		
Inesemert indercoper issalled sericest tramnan tecencec		${ }^{\text {n// }}$		$\frac{26,01}{2,0101}$	$\frac{2 / 2 / 20018}{2(2) 018}$	${ }^{\text {co, }}$	$\frac{r_{\text {co }}}{r_{\text {cosem }}}$		${ }^{72,59}$	$V_{\text {vaioss }}$	$\frac{\mathrm{Y}_{\text {co }}}{\mathrm{Vo}}$	${ }_{\text {284 }}^{285}$	2265	
Nerrimed Rerer Pumpigs Suion		200375	Dw17483	2,610	2/2/2018	s 260,900	Yos	$5 \quad 600,000$	48,14	Nerimak	$y_{\text {cos }}$			higher than anticipated. Added Electrical system upgrades for code and redundency. There will be an additional $\$ 140,000$ of expenditures to complete this project in 2021
		2001230		$\frac{26,101}{20.101}$			$\frac{r_{\text {cose }}}{\gamma_{\text {cose }}}$	$\frac{3,000}{1.5000}$		${ }_{\text {Nathas }}^{\text {Natme }}$		s 27.3	${ }^{1,584}$	
Etseocos street	Rempe	20×33^{3}	${ }_{\text {DWVIT } 183}$	2, 2,01	${ }^{2 / 2 / 22018}$	5	$\mathrm{Yos}^{\text {rem }}$	${ }_{\text {cosem }}^{20,50000}$	${ }_{2}^{20,0,54}$	Nestat	$\mathrm{Y}_{\text {resm }}$	\% ${ }^{5}$	7.35	
			DW17.183	26,101	2/2/2018			220000000	8, 8 , 0	Nastam	$Y_{\text {ros }}$	s 27,13	2,19	
		${ }^{200535}$	Div-is	2a,			$\mathrm{Yas}^{\text {cosem }}$	54,	4,920	Nata	${ }_{\text {rcsem }}$	2.1.	20,	
		${ }_{\text {20, }}^{200759}$	${ }_{\text {DWVIT }}^{\text {D }}$	${ }_{\text {2, }}^{2,1019}$	${ }_{2}^{2 / 2 / 2020.8}$				Ti9, 27	${ }_{\text {Natar }}^{\text {Natam }}$			4.6	
	Cutineses for monate end smason	20075	DW17.183	26,101	$2 / 2 / 2018$		$\mathrm{Y}_{\text {c }}$	31,500	50,9	Natha	${ }_{\text {rse }}$	27.1	2467	
Ingals S.c. complect in200		200534	DN17-183	26,01	2/2/2018		$\mathrm{Yos}^{\text {co}}$	37,000	${ }^{33,711}$	Nathas	${ }_{\text {Yos }}$	27.1	${ }^{208}$	
		200658	${ }^{\text {Dul1/483 }}$	${ }^{26,101}$	2/2/2018		$\mathrm{ros}^{\text {cos}}$	88.000	4,774	Natara	$\mathrm{Yos}^{\text {cos}}$		2009	
Walauss Stexaring omenturion)			DW17.183	26,01	22/22018		$\mathrm{Yos}^{\text {cose }}$			Nathar	$\mathrm{Y}_{\text {cos }}$	27.15		
Cobum Woods ald side exrexe)		${ }^{2012085}$	Dw17.183	25,101	$22 / 20018$	s	Yos	118,00		Natham	Y_{6}			,
		${ }_{\text {20003 }}^{2005}$		$\underbrace{2,010}_{26,01}$		6,500	${ }_{\text {res }}^{\mathrm{Y}_{6}}$	${ }^{217,50} 6$	${ }_{\text {cta }}^{\text {s }}$	$\frac{\text { Nathas }}{\text { Nostas }}$	${ }_{\text {No }}^{\text {No }}$		${ }^{1,485}$	
Bowes Dam LoD respome cmincraing	Bumes Dam Lon repome engiecrexing		0.1. DSRR			10.000	${ }^{\text {No }}$	10.000	6.71	NathumAcrimek	No			Sowes Dam LoD respone emincering
	Haris LoD	1907076,200373	0.1. SSRR			20.000		20.000	25,35		No	$5^{27.85}$		Dfietered
	Stapl Peantoi					${ }^{322000}$	${ }^{\text {No }}$	32,00	${ }^{15,788}$	Natas	$\stackrel{1}{ } \stackrel{ }{ }$	${ }^{22,88}$		
		191855,20004888	${ }^{\text {DN171-183 }}$	${ }^{26,101}$	2/2/2018	5,900	Ye	${ }^{3,457}$	s ${ }^{53,487}$	Nathan	Yoe			Pemp
New Vedide for WS S cecrician		200937	${ }^{\text {D } 1717-188}$	26,01	${ }^{2 / 2 / 2018}$	3.00	${ }^{\text {res }}$	5,000	2380	Nastas	No			
${ }^{\text {MSDC Cpmemet osmw }}$		200023	Dw17183	26,101	2/2/2018		Yos	s ${ }_{16,9,36}$	s 166,371	Varous	No			
Sooser Pemprepecementrscbuid			Dw17.183	26,101	$21 / 2018$	40,000	v_{6}	25.000		Vatases	$Y_{\text {cos }}$			
				${ }_{\text {2, }}^{2.0,01}$			$\frac{r_{\text {cos }}}{\mathrm{rcos}_{\text {cosem }}}$			$\substack{\text { Batarad } \\ \text { Noumm }}$			${ }_{3}^{134}$	
Wall Pmpr replememens	Wall Pmpr rephemens		Dw17.183	26.101	2/2/20118	15,00	Yes	5,025	- 15,600	Various	yo_{6}	28.45	431	
Chemial Fed dumprepeemens	P Fed pen		N17.183	26,101	12/2018	1,000	V_{sc}		,39	$V_{\text {atases }}$	V_{s}	s 28,45		
	Rdouid Prici cead Pmome 2×3	202026	DW17.183	26,101	22/22018		Vos	3245	S 3.54	Various	${ }_{\text {res }}$	S 28 245	101	

Proiect Name/Descripion	Proiect Deseripion	Work Oratert	nening Docket No .	NHpuc order No .	Date ofNHPLCO order 2			Estimated Project Cost as of $11 / 30 / 2020$		Community	Taxable		$\begin{array}{\|c\|} \hline \text { QCPAC Eligible } \\ \text { Property Tax } \\ \text { Expense } \\ \hline \end{array}$	
		$\frac{\mathrm{n} / \mathrm{a}}{}$		$\frac{25,101}{2.601}$	$\frac{2 / 2 / 2018}{2 / 20098}$		$\frac{Y_{c c}}{Y_{\text {cose }}}$				$\frac{Y_{c c}}{Y_{\text {cose }}}$			
		${ }_{20}^{20063}$	${ }_{\text {DWw7 } 1 / 83}$	2,601	2/2/2018	20,00	${ }_{\text {Yosem }}$	${ }_{15,120}$ /	S 14,222	Natatas	$Y_{\text {res }}$	${ }^{27.13}$	${ }_{36} 86$	
Mices stucuaral mporesemens		208289	DW177.183	25,01	2/2/2018		Y_{s}	4,235 s	s 5,170	Derty	Y_{6}	${ }^{29,06}$	\% ${ }^{150}$	
		$\frac{\mathrm{n} / 3}{206515}$			${ }^{\frac{2 / 272018}{2(2) 2018}}$	${ }^{1,500}$	$\frac{V_{c s}}{V_{\text {cosem }}}$	3,3m		$\frac{\text { Natame }}{\text { Nutum }}$	$\frac{r_{0}}{r_{\text {cose }}}$			
		${ }_{10}^{21985}$		26,01	2/2/2018	${ }_{5}$	${ }_{\text {ros }}$	${ }_{2} 2353$	${ }_{5} \quad \frac{2,53}{}$	Natham	$\mathrm{Y}_{\text {cos }}$	${ }^{27.15}$	${ }_{6} 6$	
		$\frac{200453}{\square / 4}$		${ }_{\text {2, }}^{2,0101}$		30.000	$\frac{Y_{\text {ces }}}{Y_{\text {cose }}}$	${ }^{3} 4.40$ s		$\frac{V}{\text { Varaiose }}$ Variose	${ }_{\text {Yes }}^{Y_{\text {ces }}}$	${ }_{\substack{2852 \\ 285}}^{2}$		
		$\frac{203512}{200450}$		$\frac{28,01}{20.101}$	$\frac{22 / 2018}{202018}$	s			${ }_{\text {s }} \quad \frac{0,53}{2,54}$	$\frac{\text { Natama }}{\text { Dert }}$	$\frac{Y_{\text {co }}}{Y_{\text {cem }}}$	${ }^{\text {cte }}$	$\frac{288}{68}$	
		20, 20989	${ }_{\text {DW } 717.183}$	26,101	2 2/292018	s	${ }_{\text {Yos }}$	$\frac{2.500}{0.50}$		${ }_{\text {Bediord }}$	${ }_{\text {Yos }}$	${ }^{2,702}$		Difer
				$\underbrace{\substack{2,0101}}_{\text {2, }}$		A0,000	$\frac{Y_{s s}}{Y_{s}}$		4.464	$\frac{\text { Natham }}{\text { Nothm }}$	$\frac{Y_{\text {cos }}}{Y_{\text {cos }}}$		1,179	Doferred
NTTP Statama/ MVAC	NTP Stramema/HVAC	$\mathrm{n} / \mathrm{/}$	DV177483	26,101	${ }^{2 / 2 / 2018}$		Y_{co}	s		Nathas	$Y_{\text {cos }}$			
		$\frac{\mathrm{n} / \mathrm{h}}{}$		$\underbrace{2,010}_{20,01}$		${ }_{\text {20, }}^{\text {20,000 }}$	$\frac{r_{\text {cse }}}{\mathrm{Y}_{\text {cse }}}$	5,000		$\frac{\text { Natao }}{\text { Vatiose }}$	$\frac{Y_{\text {cos }}}{Y_{\text {cos }}}$			
		$\frac{\text { 2007616 }}{20 \times 13}$		20,010			${ }_{\text {Y }}^{\text {Yos }}$	$\underbrace{\frac{3}{5} 5000}$		$\frac{\text { Natame }}{\text { Notum }}$	$\xrightarrow{\text { No }}$	27,		
Rephecrevaidec 13	Rephece veidice 63	n/a		26,101	${ }^{2 / 2 / 2018}$	40,000	${ }_{\text {rese }}$	\%		Natam	No°	27.1		Diferm
		${ }^{\text {d/as }}$ 2030		${ }_{\text {2, }}^{2,0101}$	${ }^{2 / 2 / 220218}$	sitamo		450.000 /	s ${ }_{495.351}$	Natam	${ }_{\text {Yesem }}$		13.458	
		n/a		$\frac{26,01}{20.101}$	$\frac{2 / 2 / 2018}{2(20018}$	T,	$\frac{r_{\text {cob }}}{r_{\text {cem }}}$			Natame		${ }^{2773}$		
		${ }_{200545}$	${ }_{\text {DVW } 7.183}$	26,101	${ }^{2 / 2 / 2018}$	10.000	$\mathrm{Y}_{\text {cosem }}$	18.000	16,92	Natham	${ }_{\text {res }}$	${ }^{27.15}$	459	Changed fomm 2 20 muis
	Remend			${ }_{\text {a }}^{\text {a, DissR }}$			${ }_{\text {Yoso }}^{\text {Noso }}$	\%omo		Neremand		${ }^{2885}$		Eaperecrinq Dosien Wort only
		${ }^{2002871}$				3,500	$\mathrm{No}^{\mathrm{No}}$	cosem			${ }_{\text {No }}^{\text {No }}$	${ }^{2755}$		
Micturdiase	NStict hatame	n/a		26,01	2 2/2020	20,000	${ }_{\text {ros }}$	1,500		Nestrimak	${ }^{\text {No }}$	${ }^{2858}$		
Nictatame		${ }^{20}$				s		${ }^{1.6000}$				20,5		
Nicchtudame		202038	DW17.183	25,101	2/2/2018		${ }^{\text {Yos }}$	2,993	Q,913	Nerimek	No			
Nise hadame		$\frac{200520}{2020}$		$\frac{22,011}{20.101}$	$\frac{2 / 270218}{202018}$	s	$\frac{\mathrm{Yos}}{}$	2.49	${ }_{2}^{2.49}$	${ }_{\text {Nererimak }}$	${ }^{\text {No }}$	2852		
Nicieladime		200688		${ }_{\text {2 }}^{2 \times, 01}$	${ }^{2 / 2 / 20218}$		$\mathrm{Y}_{\text {cosem }}$	1.1.60 s	1,1,60	Necrimak	No	28.		
		${ }_{\text {and }}^{\text {20276 }}$				12,00		5.58	${ }_{6,40}$	${ }_{\text {Nererimak }}^{\text {Nerimak }}$	${ }_{\text {No }}^{\text {No }}$	${ }_{\text {cke }}^{\substack{285 \\ 285}}$		
Nics sofume	T, ite Nofify			${ }_{2,5101}^{2001}$	${ }^{2 / 2 / 2018}$		\%	${ }_{\text {3,80 }} 8$	3,04	Nererimak	No	${ }^{2852}$		
Nobiticuprate	Wtotice efratese	2/2	${ }_{\text {DW } 71 / 1 / 85}$	${ }_{2}^{2,010}$	2/2/2018	8,000	${ }_{\text {Yose }}$			Nerimek	${ }_{\text {No }}$	${ }^{2852}$		
Stumon Rephecenotat wTP		${ }^{2035794}$	pwT1-183	26,101	2/2/2018	15,00	Yos	15,00	9,366	Nerimask	No	2852 s		
Additional UYS for Disistruiom Dian Cemert	We.tere	${ }^{2034393}$	Dw17-183	26,101	2/2/2018	1,000	Yos	s 1,500 ${ }^{\text {s }}$	s 2,600	Nerimak	No			
		${ }^{2030326}$	Dw17/183	26,01	2/2/2018	3 3,000	Yos	3 3,000	3,22	Necrinack	No	2852		
		${ }^{200435}$		$\frac{20,101}{2,0100}$	$\frac{2 / 2 / 2018}{2(20018}$				${ }_{16,145}^{15}$	${ }_{\text {Necrinak }}$	${ }^{\text {No }}$	${ }^{-2852}$		
Cilier Renose Conerel Sofenure	5 Sicense	n/a	DNV77.183	26.101	2/2/2018	1.300	Y_{6}	1,300		Nerimek	No	28.5		
			Dw17-183	26.101	2/2/2018	coin	$\frac{\mathrm{V}_{\text {co }}}{\mathrm{No}}$	s.ane	433,235	$\frac{\text { Natam }}{\text { Natum }}$	$\frac{r_{\text {c }}}{\gamma_{\text {c }}}$			
Now Budidigs Semer Rom Nemothing		${ }^{2010047}$				1,000	$\stackrel{\text { No }}{\text { No }}$	12.sm	${ }^{5}$	Natum	${ }_{\text {Yose }}$	${ }^{27,1.5}$	(0, 4	
Now Bulding. Prones Sysem		210003	0.1. DSRR			70,000	No	${ }_{60,900}$ s	7, 7 , 80	Nastar	yos		2.12	
	Sofrume confuration spperer for AMF prowet.	200471	${ }^{\text {DW17.143 }}$	26,101	$2{ }^{2 / 2 / 2018}$	${ }_{6}^{6.000}$	${ }_{\text {ros }}$	6,000 5	5.400	Nerimak	${ }^{\text {No }}$	285		
Doamener Mangemat		n/a	Dw17-183	26,101	2/2/2018	8,000	Yos	s		Nerimack	No	S 28525		
	Move Click Database from Oracle replacement project is complete.	2003521	Dw17-183	26,10	2/2/2018	5,000	yos	19,500 5	s 140,012	Nerimank	No	285		
				$\substack{\text { 2, } 2,01 \\ 20.101}$	$\underbrace{2 / 2 / 2018}$	s			${ }^{1.500}$	$\frac{\text { Nathas }}{\text { Notham }}$	$\frac{Y_{\text {cos }}}{\gamma_{\text {cos }}}$	${ }_{\text {chen }}^{27.15}$	4	Notin
Weat Peals steret, finain Resoration	2200 Camomer Coas	200065	DV17.183	26,01	${ }^{2 / 2 / 2018}$	s	${ }_{\text {resm }}$	${ }_{12}^{12750}{ }^{\text {a }}$	s 12750	Natham	$\mathrm{Yas}^{\text {cose }}$	${ }^{27,1,}$	366	No indelded in mperoved 2020 Bus
Retamue		N/A		${ }_{2}^{2}$,	${ }^{2 / 2 / 2019}$			(cases)	(15,	Nath	${ }_{\text {Yosem }}$	27.13	(057	
Patocinerer					$\frac{2 / 2 / 2018}{2(202018}$		$\frac{\mathrm{Y}_{\mathrm{cs}}}{\mathrm{Vec}_{\text {cem }}}$	7,000		Vatiose	${ }^{\text {No }}$	2845		Pepicerd inecene
	${ }^{20} 5$	$\frac{20069}{20}$		$\frac{26,01}{2,01}$		s		${ }^{2,5150} 1.5$	${ }_{\text {L2, }}^{1.500}$	Nathe	$\mathrm{Y}_{\text {Yos }}^{\substack{\text { res }}}$	cois	4	
		${ }_{2}^{20.10354}$		${ }_{2}^{2,0,011}$	${ }_{\text {2 }}^{2 / 2 / 22018}$		$\frac{Y_{\text {cse }}}{Y_{\text {cosem }}}$		${ }_{\substack{1,385 \\ 3,52}}^{\text {, }}$	$\frac{\text { Nathas }}{\text { Natha }}$	$\frac{Y_{\text {ces }}}{Y_{\text {cos }}}$		${ }^{\frac{38}{86}}$	
			$\mathrm{DVTl7} 71.85$		2/2/2018		$\frac{\mathrm{Yco}}{\mathrm{No}}$		$\xrightarrow{\text { O,9,90, }}$ 3,05	Natame	$\frac{\mathrm{Y}_{\mathrm{c}}}{\mathrm{K}}$	${ }_{2}^{27.73}$	220	
,	仡			jecect 200 Tonal Crapiel	IEpentituce Buget-	\% 9,500		SR,	S9,2,20	Projecete Propery ${ }^{\text {P }}$	spens	cined viit	L5,083	

$\underset{\substack{\text { Yanse } \\ \text { Yarse e }}}{ }$

2/11/2021
21-023_2022-03-08_exh_6

Project Name/Descripion	Proiect Descripion	Work Order \#	Financing Docket No.	NHPUC Order	$\begin{gathered} \text { Date of NHPUC } \\ \text { Order } \end{gathered}$	Approved Budgeted Amount	QCPAC Eligible?	Community	Taxale		Tx Rate (1)		Explanation for Change/Addition/Deletion since Feb 2021 Filing
Foreman Truck 2021 New Services (10)	Uefitof Foreman's Tuck body at C C Madigans.			$\frac{1 \text { DSRR }}{\text { Aviting }}$	Approval	$\frac{\text { 6,0,000 }}{\substack{\text { andon }}}$	${ }_{\text {No }}^{\text {Noses }}$	Merrimack	Yos		284		
2021 Renewed Services (20)	Replacement to f failed Sesenices		${ }_{\text {DV }}^{\text {DV2-1.157 }}$	${ }_{\text {ana }}^{\text {Avaining }}$	fpproxal	${ }^{\text {50,000 }}$	Yes	Varios	${ }_{\text {Yes }}^{\substack{\text { Yes }}}$		${ }_{\text {28, }}^{28,5}$	${ }_{\substack{1,1,35 \\ 3,150}}^{\text {c, }}$	
2021 Hydrans (15)	Replacement of ton-tunctional hydrants		DW20.157	Averiting	1pproval	00,000	Yes	Various	Yes		28.4		
2021 Gates (10)	Replacement of Falied Gaie vaves		DW200.157	Ansiting	Approval	40,000	${ }_{\text {Ycs }}$	Various			${ }_{28,45}$	${ }^{1.1,38}$	
				$\frac{\text { Averiting }}{\text { Ansingy }}$	$\frac{\text { ppporal }}{\text { Prporal }}$		$\frac{\mathrm{Ycs}}{\mathrm{Ycs}}$	$\frac{\text { Various }}{\text { Varioss }}$	$\frac{\text { Yes }}{\text { No }}$	s	${ }_{28,4}^{28,4}$	12,029	
Replacement U vilit Truck			DW ${ }^{\text {20-157 }}$	Avaitin	Ipproval	70,000	Yes	Nerimack	No				
Replacement utulit Truck	为		DW20-157	Avating	Appro	70,00	Yes	Nerrima	No				
			$\frac{\text { DV20.157 }}{\text { DW20.15 }}$	$\frac{\text { Avating }}{\text { Aning }}$	Aproval		$\frac{\mathrm{Yes}}{\substack{\text { Yes }}}$	$\frac{\text { Nererimack }}{\text { Merimack }}$	No		${ }_{20,5}^{28.5}$		
Repicacement SUV - Meter Rea			DW20.15	Avait	Appro	35,00							
Landscape Im	on ssytem, loam \& seed area at footo of Distri		${ }^{\text {DN } 20.15}$		pproval	${ }_{15,0}$		Nerrim				${ }_{4} 28$	
			$\frac{\text { DW20-157 }}{\text { DW } 2.157}$	Avaiting	Approval		$\mathrm{Y}^{\text {Yes }}$	$\frac{\text { Nererimeck }}{\text { Nerimanck }}$	No		$\xrightarrow{2885}$		
Replacement Equipment				$\frac{\text { Avaing }}{\text { Avaiting }}$	$\frac{\text { Approval }}{\text { Proval }}$		${ }_{\text {Yes }}^{\text {Yes }}$	$\frac{\text { Nerermack }}{\text { Nashas }}$	${ }_{\text {Yos }}$		$\xrightarrow{28,5}$	597	
Valve Tumer 8 Vac Tuck	Replacemmt tor 460 - 15 Y Yar V VacVave Traile rwith excessive rot, will not pass inspection.		DWV20.157	Aviting	1pproval	220,000	Yes	Nerimack	No		28.5		
Office Space for Const \& Main Supenisor	Permanent offitce space for Contruction \& Maintenance Supenisor		DW20-157	Avaiting	Approval	15,000	${ }_{\text {Yes }}$	Nerrima				${ }^{428}$	
Locker Room Deep Wass Sins				$\frac{\text { Avaturg }}{\text { Anuting }}$	Aproval	- 1 O,000	Yes	Nerma	Ye		${ }_{2}^{205}$		
Brook Street			DW20-157	Avait	proval	${ }_{\text {13,300 }}$		Nashas				2,74	
Hamilon Strect	Rephace 410 L of $f 6$ inch C C with 4 inch D DIPCL.		DW20-157	Avsiting	Approval	33,000		Nashua				895	
Burit Street	Rephace 45 Li. of 4 finch C with 8 inch Dipct			$\frac{\text { Avating }}{\text { Auring }}$	Aproval	2,	Yes	Nashua	$\frac{\mathrm{Yes}}{\substack{\text { Yes }}}$		$\xrightarrow{27.1}$	${ }_{61}^{61}$	
Veron Street	Rephace 675 L. Fof 6 inch Cl with 8 inch D DIPCL.		DW20.157	Avaiting	Tproval	56,000	Yes	Nashua	Yes		27.13	1,519	
arsolate			$\mathrm{DW} 20-157^{\text {2 }}$	Avaiting	Ppproval	${ }^{24.4,00}$	${ }_{\text {Yes }}$	Nashua				$6{ }^{612}$	
Kestere Frmm Tonk Rephecement			DW20.157	Avaiting	Approval	A00000	Yes	Nashas	Yos		${ }^{2711}$	${ }_{10 \text { cosen }}$	
Cobur Woods all	Rephace 400 LPF of 2 inch PVU wirh 4 inch DIPCL.		DW20-157	Aviting	Tpproval	$1.855,000$	Yes	Nashua	Ye		27.1	50,36	
Terimack River frake	mack Riser Inale Nodofifed Source Water Procection Pan			0.1 DSRR		30,000	No	Nerimack					
${ }_{\text {Bataom Street }}^{\text {Eucid Avenue }}$				$\frac{\text { Avatang }}{\text { Auming }}$	Tpproval	294,000	${ }_{\text {Yes }}^{\text {Yes }}$	$\frac{\text { Nashas }}{\text { Natun }}$	${ }_{\substack{\text { Yes } \\ \text { Yes }}}^{\text {res }}$		${ }^{27.73}$		
Sweet till liemnection	Comnecting Pipeline and Meter Pit			NHDES SRR fot DVGGI		20,000	${ }_{\text {Yes }}$	${ }_{\text {Plastow }}$	${ }_{\text {Yes }}$		20,00		
Tivi Rige interomnectio	俍							${ }_{\text {Plat }}$				2,90	
Tirimbe GPS and Monitoring Equipment	Level Monitors, Pressure Montiors and Fow Monitors		DW20-157	Avaiting	Approval	$3{ }^{32000}$	Ycs	Various	Yes		${ }_{28,45}$	910	
Merimack River Watershed council	rarat Match withoth Stake hoderers suok tor five years.		$\mathrm{DN} 20-157^{\text {D20. }}$	Avating			${ }^{\text {No }}$	Various	No				
Inesmentit Developer services			$\frac{\mathrm{D} \times 2.0075}{\mathrm{DW} 20.157}$	$\frac{\text { Avarug }}{\text { Ansiting }}$	$\frac{\text { Approval }}{\text { Pproxal }}$		${ }_{\text {Ycs }}$	$\frac{\text { Vanous }}{\text { Nashas }}$	$\frac{\text { Yes }}{\text { No }}$		${ }_{2}^{27.13}$	2,01	
Engineerin V vehicle	SUV Repeaceses 4 (134)2010 with over 196.000 miles.		DW20-157	Anviting	Ipproval	30,000	${ }_{\text {Yes }}$	Nashua	No	s	27.1		
Boo Tencrain Contractual Payment			${ }_{\text {D }}^{\text {D } 20-120.157}$	$\frac{\text { Avalung }}{\text { Anving }}$	Approval	$\xrightarrow{\text { 3,0,000 }}$	${ }_{\text {Yeses }}^{\substack{\text { Yeses }}}$	${ }_{\text {Anhmest }}$	$\stackrel{\text { No }}{\text { No }}$				
Booster Pump replacementrebuid	Sositer Pump replacementrebuild		DW20-157	Avaiting	tpproval	40,000	${ }_{\text {Yes }}$	Various	${ }_{\text {Yes }}$	s	28.45	${ }_{1,138}$	
Wenl Pump repacaements	Well Pump reparaements			$\frac{\text { Avating }}{\text { Anuing }}$	Aproval		$\frac{\text { Yces }}{\text { Yes }}$	Various	$\frac{\mathrm{Yes}}{\substack{\text { Yes }}}$			${ }_{225}^{42}$	
Supply Pond Spllway Improvements	Supply Pond Sollway Improvements		Dw2	Avaitit	Approval								
Harris Dal raise earthen embenakment, raise dike wall, reguliovy requirement.	Harris Dam raise earthen embankment, raise dike wall, regulator requirement.		$\mathrm{DW}^{2} 20-157$	Avating	Tpproval	O6, 0 ,00	${ }_{\text {Yes }}$	Nerimack N(Nashaa	${ }_{\text {Yes }}$		${ }_{22,88}$	${ }^{20,851}$	
Mis. Strictural mporemenis			${ }_{\text {D }{ }^{\text {D } 20-10-157}}$	${ }_{\text {Avalang }}^{\text {Avaing }}$	$\frac{1.8 p r o v a l ~}{\text { Pproxal }}$	${ }_{\text {20,0,00 }}^{20,0}$	$\frac{\text { Ycs }}{\text { Yes }}$						
Mscollanous S S A ADAEElectical	Miscellaneous SCADAEIEctrical		DW20.15	Avsiting	Approval	30,000	Yes	Various			22.4	${ }_{85}$	
Reeuld H High hith hemedediale Pu	Repuid 1 High hifth nememediate pu		DW $20-157$	Avaiting	Approval	25,000	${ }_{\text {Yese }}$	Nashua				${ }_{6,78}^{68}$	
Purchase new lab eouiment	Purchase newrw lab eauioment		${ }_{\text {D }}^{\text {D } 20-20.157}$	${ }_{\text {Ansating }}$ Ansing	Approval	20,000	${ }_{\text {Yeses }}^{\text {Yese }}$	Vantos	¢		$\xrightarrow{2 \times, 4}$	${ }_{20}^{205}$	
Mssellaneous Fencing and Seourity projects	Miscellaneous Fencing and Security prijects		DW20-157	Avaiting	Ipproval	10,000	Yes	Various	Yes		${ }_{28,4}$	${ }^{285}$	
Add hird pump - Donald Street Bosiere Station	Add Third pump - Donala Street ososier Station			Avating	Ppproval	4,0,000	Yes	${ }_{\text {Bedford }}$	Yes		${ }^{24.6}$	${ }_{\text {985 }}$	
Veanicle erepalacemenent			$\frac{\mathrm{DW} \text { W20-157 }}{}$	Avaing	¢pproval	40,000	No	Nashua	${ }^{\text {No }}$		27.1		
			$\frac{\text { Dw20.157 }}{\text { DW20.157 }}$	$\frac{\text { Avating }}{\text { Avaiting }}$	Tpproval		$\underbrace{\text { Yes }}_{\text {Yes }}$	$\xrightarrow{\text { Nashan }}$ Nerimack	$\frac{\text { Yes }}{\text { Yes }}$		${ }_{2}^{28.7 .}$	ci4	
Repair Replace Sofitiand Fascia, Boat House Eldg.	Repair eeplace Sofitiand Fascia, Boat House Ellag		DW20-157	Aviring	tpproval	30,000	Yes	Nashua	Yos		27.1	814	
Instal new Day Fuel Tank, Controler and reated equip. FWPS Generator	piping system which is not atalowe.		DW20-157	Avaiting	Ipproval	75,000	Yes	Nashua	No		27.13		
	Replace Synergen/WAM with newer more cost effective/improved functionality Infoview Licenses		$\frac{\text { DW20-157 }}{\text { DW20.157 }}$	$\frac{\text { Avaiting }}{\text { Avxiting }}$	Approval	$\xrightarrow{\text { I0, }}$ (6,500000	$\frac{\mathrm{Yes}}{\mathrm{No}}$	Nashas	$\frac{\text { Yes }}{\text { No }}$		${ }_{2}^{27.13}$	${ }^{713}$	
Redundant themet			Dw20-157	Iwating	Approval	6,000	Yes	Nashua	Yos			1.872	
tment Plant and Distribution securit retrofit	Update both the Treatment plant and Distribution to the same security system that the new HQ is using so that there is one badge procedure and system to maintain. It will also gives us better analytics and notifications of access to each of the buildings.		20.157	Avaiting	Ipproval	37,00	Yes	Nashua	Yes		27.13	1,004	
ITtorage Room / Work Room			${ }^{\text {DW20-157 }}$	Avaiting	Mpproxal	4,000	Yes	Nashan	Yes		27.13	s 100	
Cobeemeics Disk Aray	Replace 7 y yar of device used for system back ups.		DW20-157	Ansiang	Approval	20,000	Yes	Nashua	No	s	27.13 s		

Project Name/Descripion	Project Descripion	Work Order \#	$\underset{\substack{\text { Financing Docket } \\ \text { No. }}}{ }$	NHPUC Order No.	$\begin{gathered} \text { Date of NHPUC } \\ \text { Order } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { Approved } \\ \text { Budgeted Amount } \end{gathered}$	QCPac Eligible?	Community	Taxable	Tax Rate (1)		Explanation for Change//Addition/Deletion since Feb 2021
Vitual Desktops			Dw20-157	Avaiting	pproval	100,000	Yes	Nashua	No	27.13	s	
Compuler Upates	There are 30 Compulers that are due for erepelacement in 2023 . These compputers have very sow hard drive	which make thes	$\frac{\text { DV20.157 }}{\text { DW20.15 }}$	Avationg	ipproval	$\frac{6.000}{1,000}$	$\frac{\mathrm{Yes}}{\mathrm{Yeses}^{\text {es }}}$	$\frac{\text { Nashan }}{\text { Nashas }}$	$\frac{\mathrm{No}}{\mathrm{Yos}}$	- 2.713	${ }_{27}$	
Muris FER Enancements	Munis F ER E Enhancements		DW20-157	Avising	pproval	35,000	Yes	Nashua	No	27.13		
Click to Munis Data interaces	Implement connection between ClickSoft and Munis to reduce the need of user to duplicate data entery into Munis from information captured in ClickMobile		DW20-157	Awaiting	pproval	\$ 20,000	Yes	Nashua	No	27.13	${ }^{5}$	
CMMS PLL mplementaion		ws tor staft.	$\mathrm{DN}^{\text {W20-157 }}$	Anvating	pproval	$\xrightarrow{17,0,000}$	$\frac{\mathrm{Yec}}{}$	Nashas	${ }_{\text {Yes }}$	${ }^{27.15}$	${ }_{4,612}$	
Citwors C LLL License			$\frac{\text { Dve } 20.57}{\text { DV20.157 }}$	${ }_{\text {Avaiting }}^{\text {Avaing }}$	ipproval	${ }_{\text {cosen }}^{\text {40,000 }}$	${ }_{\text {Yes }}^{\substack{\text { Yes }}}$	$\xrightarrow{\text { Nashas }}$ Vatious	$\stackrel{\mathrm{No}}{\mathrm{No}}$	27.15		
Misc sotware	M Miscs oftware		$\frac{\text { Dw20-157 }}{\text { DW20.15 }}$	$\frac{\text { Avatitag }}{\text { Avaing }}$	Pproval	$\frac{12,000}{1,5000}$	$\frac{\text { Yes }}{\text { Yes }}$	$\frac{\text { Varioss }}{\text { Nashas }}$	$\frac{\mathrm{No}}{\mathrm{No}}$	${ }_{\text {28, }}^{27.15}$		
		Penn	Water Works Pro	2021 Toal Capital	xpenditure Bugget	12,01,2,20		Proiected P	Tax Exp	associated with	S 285,97	

Years@
Years ©

$\underset{\substack{657771 \\ 18,745}}{6,10,}$

Pennichuck Water Works, Inc.
DW $21-023$
DW 21-02:
Projected
21-023_2022-03-08_exh_6
$\underset{\substack{\text { Pww } \\ \text { Expribict Filing } \\ \text { Page- } \\ \text { Page }}}{ }$

Project Name/Descripion	Project Description	Work Order \#	$\underset{\substack{\text { Financing Docket } \\ \text { No. }}}{ }$	$\underset{\text { No. }}{\substack{\text { NHPUC Order }}}$	Date of NHPUC Order	$\begin{gathered} \text { Approved } \\ \text { Budgeted Amount } \end{gathered}$	QCPAC Eligile?	Community	Taxable	ate (1)	$\begin{gathered} \text { QCPAC } \\ \text { Eropertyle Tax } \\ \text { Expense } \end{gathered}$	Explanation for Change/Addition/Deletion since Feb 2021 Filing
2022 New Serices (10)	Single Family, Owner Build, New Homes		DW20-157	Avaitin	Approval	50,000	Yes	Various	Yes	28.45	${ }^{1,243}$	
2022 Renewed Services (20)	Replacement of Failed Services		${ }^{\text {DW } 20-157}$	Averitin	Approval	110,000	Yes	Various	Yes	28.45	3,130	
$\frac{2022 ~ H y d r a n t s ~(15) ~}{2022 \text { Gates (10) }}$	Replacement of on-tunuctional hydrants Replacement of fraile Gait vaves		$\frac{\text { D } 200-157}{\text { DW20-157 }}$	$\frac{\text { Awation }}{\text { Avaitin }}$	$\frac{\text { Approval }}{\text { Approval }}$	90,000 40,000	${ }_{\text {Yes }}^{\text {Yes }}$	$\frac{\text { Various }}{\text { Various }}$	$\xrightarrow{\text { Yes }}$	$\xrightarrow{28.45}$		
2022 Radios (500)	Replacement of failed Radios (250), New Radios for new customers (250).		$\mathrm{DW} 20-157$	Avaitin	${ }^{\text {Approval }}$	50,000	Yes	Various	Yes	28.45	${ }_{1,423}$	
22 Radios (4000)	Yr 2 of 7 Replacment of all PWW Radios installed in 2007 (4000) by contractor.		DW20-157	Avaitin	Approval	520,000	Yes	Various	Yes	28.45		
	New meters for new customers, including PFOA (250). Replacemenen of failed meters(250).		DW20-157	Avatitin	Approval	50,000	Yes	Various	Ycs	28.45	${ }^{\text {s }}$	
Replacement Boom Truck			$\frac{\text { DW } 20-157}{\text { DW2-157 }}$	$\frac{\text { Avatitin }}{\text { Avaitin }}$	$\frac{\text { Approval }}{\text { Approval }}$	150,000 70,000	Yes	$\frac{\text { Merrimack }}{\text { Merrimack }}$	No	${ }_{28.52}^{28.52}$		
Replacement Uvility Tuck	New Utility Truck to replace exisiting high mileage/maintenance venicles.		DW20-157	Avaitin	Approval	70,000	Yes	Merimack	No	28.5		
Replacment Superisor P Pickup	w Full Sized Pickup to Replace existing high mileagelmaintenance pickup.		DW20-157	Avaitin	Approval	45,000	Yes	Merimack	No	28.5		
Replacement Utility Van	New Utility Van to replace exisiting high mileage/maintenance veniciles.		DW20-157	Avaitin	Approval	40,000	Yes	Merrimack	No	28.52		
Protectus Meter Upgrade	Protectus Meter Upgrade		DW20-157	Avaitin,	Approval	22,000	Yes	Nashua	Yes		${ }_{59} 5$	
Miscellaneous Construction Equipment				0.1 DSRR		40,000	Yes	Merimack	Yes	28.5	1,141	
alcom Street	Replace 1240 LF 6 inch Cl with 1240 LF 8 inch DIPCL.		DW20-157	Avaitin	Approval	73,000	Yes	Nashua	Yes	27.13	1,97	
Euculid Avenue	Replace 425 LF 6 inch C C with 425 LF 8 i inch DiPCL.		DW20-157	Avaitin	${ }_{\text {Approval }}$	25,200	Yes	Nashua	Yes		684	
Fairiew Street Temple St (south to gorman)	Replace 800 LF 6 inch C C with 800 LF 8 inch Dipcl.		$\frac{\text { Dw20-157 }}{\text { DW20-157 }}$	$\frac{\text { Avaitin }}{\text { Avain }}$	Approval	$\frac{47,000}{66,000}$	Yes	$\frac{\text { Nashua }}{\text { Nabluan }}$	Yes	${ }_{2}^{27.13}$	1,275	
School Street (High to W. Pearl Alleyway)	Replace 4000 LF of 4 inch Cl with 8 inch DIPCL.		DW $20-157$	Avaxitin	${ }_{\text {Approval }}$	${ }^{27,000}$	Yes	Nashtua	Yes	${ }^{27.13}$	${ }_{733}$	
Sargent Street	Replace 1900 LF 6 inch Cl with 1900 LF 16 inch DIPCL.		DW20-157	Avaitin	Approval	480,000	Yes	Nashua	Yes	27.13	13,022	
Courtland Street	Replace 1170 LF 4 inch Cl with 1170 LF 16 inch DIPCL.		DW20-1	Ava	pproval		Yes	Nashua	Yes		迷	
Ald Street	Replace 1860 L L of 6 \& 8 inch Cl with 12 inch DIPCL.		DW20-157	Avaitin	pproval	744,000	Yes	Nashua	Yes	27.13	20,76	
Lawndale Avenue	Replace 1085 LF of 6 inch Cl with 12 inch DIPCL.		DW20-157	Avaition	Approval	42,000	Yes	Nashua	Yes	27.13	${ }^{11,395}$	
Benson Avenue	Replace 550 LF of 4 inch Cl with 8 inch DIPCL.		DW20.157	Avaitin	Approval	160,000	Yes	Nashua	Yes	27.13	4,341	
Spaulding Street	Replace 950 LF Of 6 inch Cl with 8 inch DIPCL .			Avatin	Approval	${ }_{\text {280,000 }}$	Yes	$\frac{\text { Nashua }}{\text { Nasua }}$	${ }_{\text {Yes }}$	$\xrightarrow{27.13}$	$\xrightarrow{7,596}$	
Spauding Avenue			DW20-157	Avaitin	${ }_{\text {Approval }}$	80,000	Yes	Nashias	${ }_{\text {Yes }}$	${ }^{27.13}$	s ${ }^{\text {s }}$	
St Lazare Street	Replace 415 LF of 2 inch Cl with 4 inch DIPCL.		DWW2-157	Avaitin	${ }_{\text {Approval }}$	80,000	Yes	Nashua	Yes	27.13	2,170	
Ingalls St (St Camille to end)	Replace 200 LF of 1.5 inch CI with 4 inch DIPCL.		DW20.157	Avaitin	Approval	40,000	Yes	Nashua	Yes	27.13	1,085	
Nye Avenues	Replace 400 LF of 281.5 inch Cl with 4 inch DIPCL.		$\mathrm{DW}^{\text {W20-157 }}$	$\frac{\text { Avaitin }}{\text { Avain }}$	Approval	73,000	Yes	Nashua	Yes	27.13	1,980	
Faiview Street	Replace 800 LF 6 inch Cl with 800 LF 8 inch DIPCL.		DWW20-157	Avaitin	${ }_{\text {Approval }}$	189,000	Yes	Nashlua	${ }_{\text {Yes }}$	${ }_{27.13}^{27}$	${ }_{5}^{2,128}$	
Gray Avenue	Replace 360 LF of 6 inch Cl with 6 inch DIPCL.		DW20-157	Avaitin	Approval	85,00	Yes	Nashua	Yes	27.13	2,306	
Additional Water Main Replacement	To be determined		DW20-157	Avaition	Approval	1,100,000	Yes	Nashua	Yes	27.13	2,843	
(2022 Nasha City ewer Projects	To be determined		DW20-157	Avatin	Approval	S00,000	Yes	Nashua	Yes	27.15	${ }^{24,477}$	
mack River W	Grant Match with other Stakeholders \$40k for five years for land conservation/protection in the Merrimack River Watershed.		${ }^{0.1}$ DSE			s 40,000	No	Vaxious	No	28.45		
Investment in Developer Serv	${ }^{1 \times}$ Annual Rvenue		DW20.157	$\frac{\text { Avaiting Approval }}{\text { Avaino }}$		90,000	Yes	Various	Yes	${ }_{2}^{28.45}$	S ${ }^{\text {2,561 }}$	
Replace Engineering Pickup Replace Engineering Pickup	Replace venicie with high mileage.		$\frac{\text { Dw } 20-157}{\text { DW20-157 }}$	Avaiting Approval		${ }_{\text {40,000 }}^{40,000}$	$\xrightarrow[\text { Yes }]{\substack{\text { Yes }}}$	$\frac{\text { Nashua }}{\text { Nashas }}$	$\frac{\mathrm{No}}{\mathrm{No}}$	${ }_{27.13}^{27.13}$		
Milford Booster Station	ReplacelRelocate//Uograde the Milford Booster Station (>4 MGD)		DW20-157			800,00	No	${ }^{\text {Amherst }}$		3293	26.34	
Temple St (south to gorman)	Replace 900 LF of 8 inch CI with 12 inch DIPCL.		DW20-157	Avaiting Approval		26,3,00	Yes	Nashua	Yes	27.13	7,135	
School Street (High to W. Pearl Alleyway)	Replace 400 LF of 4 inch Cl with 8 inch DIPCL.		DW20-157	$\frac{\text { Avxiting Approval }}{\text { Avxiting Aproval }}$		108,000	Yes	Nashua	Yes	27.13	2,930	
Linwood Street	Replace 960 LF of 6 inch Cl with 8 inch DIPCL.		DW20-157			$28,8,80$	Yes	Nashua	Yes	27.13	7,699	
Booster Pump replacementrebuild	Booster Pump replacementrebuild		DW20-157	Awaiting Approval		4,000	${ }_{\text {Yes }}$	${ }_{\text {Various }}$	${ }_{\text {Yes }}$	28.45	${ }_{\text {1,1,38 }}$	
Well Pump replacements	Well Pump repaceements ${ }^{\text {Chemical }}$ Feed pump replacements		$\frac{\text { D } 20-157}{\text { DW20-157 }}$	$\frac{\text { Avaiting Approval }}{\text { Awaiting } \text { Pproval }}$		${ }^{1,0,000}$	${ }_{\text {Yes }}^{\text {Yes }}$	$\frac{\text { Various }}{\text { Various }}$	${ }_{\text {Yes }}^{\text {Yes }}$	-28.45 28.45	${ }^{\text {S }}$	
Installreplace treatment systems in small CWS.	Installreplace treatment systems in small CWS.		DW20-157	Avaiting Approval		15,000	Yes	Various	Yes	28.45	${ }^{5} \quad 427$	
Misc. Structural Improvements	Misc. Structural Improvements		$\frac{\mathrm{DW} 20-157}{\text { DW20.157 }}$	Avaiting Approval		15,000 20,000	Yes	$\frac{\text { Various }}{\text { Various }}$	Yes	- 28.45	${ }_{5}{ }_{5}^{4}$	
Miscellaneous SCADAEElectrical	Miscellaneous SCADAEElectrical		DW 20.157	$\frac{\text { Avaiting Approval }}{\text { Avxiting }}$ Pproval		30,000	Ycs	Various	Ycs	${ }^{28.45}$	s ${ }^{854}$	
Well Rehabilitation	Well Rehabilitation		DW20-157	Avaiting fpproval		50,000	Yes	Various	Yes	28.45	1,423	
WTP Stuctural/tvac	WTP StructuralHVAC		DW20-157	Avaiting Approval		10,000	Yes	Nashua	Yes	27.13		
Purchase new lab equirment	Purchase new lab equipment		DW20-157	$\frac{\text { Avaiting Approval }}{\text { Axaiting Aproval }}$		20,000	Yes	Nashua	Yes	$\stackrel{27.15}{2713}$	¢	
Mscelaneous Fencing and Securily proects	Me-paineows FWPS ceiling		$\frac{\mathrm{DW} 20-157}{\text { DW2-157 }}$			20,000	Yes	Nashlua	Yes	${ }_{27.13}$	${ }^{5} \quad 543$	
WTP Replace Vehicle	Replace High Mileage Vehicle.		DW20-157	Anaiting Approval		6,000	Yes	Nashua	No	27.13	s	
WTP Replace Vehicle	Replace High Mileage Venicicle.		DWW20-157	$\frac{\text { Avaiting Approval }}{\text { Avaiting Aproval }}$		40,000	Yes	Nashua	No	27.13		
Bowers Spillway Reconstruction, regulatory requirement Misc Hardware	$\frac{\text { Bowers Spillway Reconstruction, regulator requirement }}{\text { Misc Hardware }}$		DW20-157	${ }_{0.1}^{\text {A SRRRin }}$	Approval	$\frac{1,100,00}{20,000}$	$\frac{\text { Yes }}{\text { No }}$	$\frac{\text { Nasthan }}{\text { Nashua }}$	$\frac{\text { No }}{\text { No }}$	${ }_{2}^{27.13}$		
Misc Sotware	Misc Sotware			0.15 DSRR		${ }^{12,000}$	No	Nashua	No	${ }^{27.13}$		
Network Hardawre infrastucture improvements	Update aging network infustructure.		DW20-157	$\begin{aligned} & \text { Awaiting Approval } \\ & \hline 0.1 \text { DSRR } \end{aligned}$		80,000	Yes	Nashua	No	${ }^{27.13}$		
Major Sotware Repacaement Project	Munis Ennancements		${ }^{\text {DW202-157 }}$			${ }_{\text {6,000 }}^{35000}$	Yos	$\frac{\text { Nashua }}{\text { Nashas }}$	No	${ }_{\text {27,13 }}^{27.13}$		
		Pennichuck Water Works Projected 2022 Total Capital Expendiure Budget -				10,58,600		Projected ?	perty Tax	ense associated	\$ 240,298	

$\begin{aligned} & \text { Total Prjected Bond funded PWW QCPAC Capex for 2021 - }\end{aligned}$ \$ $\quad 9,536,600$
Total Projected NHDES SRF/DWGTF funded PWW QCPAC Capex for 2021-
551,503

Project Name/Descripion	Proiect Descripition	Work Order \#		$\underset{\substack{\text { NHPUC Order }}}{\text { No. }}$	$\begin{aligned} & \text { Date of NHPUC } \\ & \text { Order } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Approved } \\ \text { Budgeted Amount } \end{array}$	QCPAC Eligible?	Community	Taxable		Tax Rate (1)	$\begin{gathered} \text { QCPic } \\ \text { Sigibicte } \\ \text { Propery Tax } \\ \text { Expense } \end{gathered}$	Explanation for Change/Addition/Deletion since Feb 2021 Filing
2023 New Serices (10)	Single Family, OMner Build, New Homes Repacaementof failed Services		$\frac{\text { DN } 20-157}{\text { DW20.157 }}$	$\frac{\text { Avesinn }}{\text { Avainn }}$	$\frac{\text { Approval }}{\text { Approval }}$	$\frac{50,000}{10,000}$	Yes	$\frac{\text { Various }}{\substack{\text { Various }}}$	Yes		$\frac{28}{28 .}$	$\underbrace{\substack{\text { a }}}_{\substack{1,23 \\ 3,130}}$	
${ }_{2023}^{2023 \text { Hydranats (15) }}$	Repplacemenent of fono-tunctional hydrants		$\frac{\text { DW20-157 }}{\text { DW20.15 }}$	Avaiting	Approval	90,000	Yos	Various	Ycs		${ }^{28} 8$.	${ }_{\text {2,561 }}$	
2023 Gates (10)	Replacement of Failed Gate Vaves		DW20.157	Avaitin	Approval	40,000	Yes	Various	Yes		28.	${ }^{1,1,188}$	
2023 Radios (500)	Replacement of failed Radios (250), New Radios for new customers (250).		DW20-157	Avaitin	${ }_{\text {Approval }}$		${ }_{\text {Yes }}^{\text {Yes }}$	${ }_{\text {Various }}$	${ }_{\text {Yese }}$		${ }_{28}^{28}$	-1,423	
			$\frac{\text { DW20-157 }}{\text { DW20-157 }}$	Avatitin	$\xrightarrow{\text { Apppoval }}$ Approal	${ }_{\substack{520,00 \\ 50,000}}$	${ }_{\substack{\text { Ycs } \\ \text { Ycs }}}^{\text {res }}$	$\mathrm{V}_{\text {Various }}^{\text {Various }}$	$\xrightarrow{\text { Yes }}$		${ }_{2}^{28 .}$	${ }_{\substack{14,795 \\ 1,423}}^{\text {li, }}$	
Replacement Utility Truck	New Utility Tuck to replace exising high mileagemmintenance venicles.		DW20-157	Avaitin	Approval	70,000	Yes	Merrimack	No		28.		
Replacement Uulity TTuck	New Unity Truck to replace exisiting high mileage/maintenance venicles.		$\frac{\text { DW } 20-157}{\text { DW20.157 }}$	${ }_{\text {Avaitin }}$	Approval	$\frac{70,000}{45000}$	$\frac{\text { Yes }}{\text { Yose }}$	$\frac{\text { Nerimack }}{\text { Nerimack }}$	No		28.		
Replacment Supenisor Pickup Replacement Utily Van	New Fur sized Pickup to Repiace exsing high mieagemaminenance pickup.		$\frac{\text { DW } 20-157}{\text { D } 20-157}$		${ }_{\text {Approval }}$	4 4,0,000	${ }_{\text {Yes }}^{\text {Yes }}$	${ }_{\text {Nerrimack }}$	No No		${ }_{2}^{28.8 .}$		
Protectus Meter Upgrade	Protectus Meter Uporade		DW20-157	Avexiting	Approval	22,000	${ }_{\text {Yss }}$	Nashua	$\stackrel{\text { No }}{\text { No }}$		${ }^{27.1}$		
Miscellaneus Constuction Equipment PWW RRA-ERP	Miscellaneous Construction Equipment ${ }^{\text {a }}$ Implement Recommendations Evaluated in 2021.		DW20-157	${ }^{0.1}$ DSRR A maiting	Approval	${ }_{50,0000}^{40}$	${ }_{\text {Yes }}^{\text {Yes }}$	$\frac{\text { Merrimack }}{\text { Vaxious }}$	$\frac{\text { Yes }}{\text { Yes }}$		$\stackrel{28}{28 .}$	${ }_{\text {l }}^{1,1421} 1$	
Sargent Street	Replace 1900 LF 6 inch Cl with 1900 LF 16 inch DIPCL.		DW 20.157	Avaitin,	Approval	84,000	Yes	Nastua	Yes		27.	2,279	
Courland Street	Replace 1170 LF 4 inch Cl with 1170 L F 16 inch DIPCL.		$\frac{\mathrm{DW} 20-157}{\text { DW20.157 }}$	${ }_{\text {Averainn }}^{\text {Avinh }}$	Approval	${ }_{\substack{52,000 \\ 130000}}$	$\frac{\mathrm{Yes}}{\text { Yes }}$	Nashua	$\frac{\mathrm{Yes}}{\text { Yes }}$		${ }_{2}^{27}$	${ }_{\text {c, }}^{\frac{1,411}{3,27}}$	
Alld Street Lawndal Avenue			$\frac{\text { DW } 20-157}{\text { DW20.157 }}$	${ }_{\text {Avaiting }}$	${ }_{\text {Approval }}^{\text {Aproval }}$	${ }_{\text {l }}^{13,0,000}$	${ }_{\text {Yes }}^{\text {Yes }}$	$\frac{\text { Nashua }}{\text { Nastua }}$	Yes		${ }^{27} 27$.	${ }_{\substack{3,29 \\ 1,980}}$	
Benson Avenue	Replace 550 LF of 4 inch C 1 with 8 inch DIPCC.		DW20-157	Avaitin	${ }^{\text {Approval }}$	28,000	Yes	Nashua	Yes		27.1.	760	
Spaulding Street	Replace 950 LF of 6 inch Cl with 8 inch DIPCL.		$\frac{\mathrm{DW} 20.157}{\text { DW20.157 }}$	${ }_{\text {Averaine }}$	Approval	${ }_{\text {4.,900 }}^{411000}$	${ }_{\text {Yes }}$	Nashua	$\mathrm{Y}_{\substack{\text { Yese }}}^{\text {Yes }}$		${ }^{27}$	${ }_{1,502}^{1,202}$	
Alstead dvenue $\begin{aligned} & \text { Ald } \\ & \text { Spauling Avenue }\end{aligned}$			$\frac{\text { DV } 20-157}{\text { DW20-157 }}$	${ }_{\text {Avaiting }}^{\text {Ansing }}$	${ }_{\text {Approval }}^{\text {Aproval }}$	${ }_{\text {1, }}^{1,0,000}$	Yes	${ }_{\text {Nashua }}$	Yes		${ }^{27} 27$.	${ }_{380}^{298}$	
St Lazare Street	Replace 415 LF of 2 inch CI with 4 inch DIPCL.		DW20-157	Avaitin	Approval	14,000	Yes	Nashua	Yes		27.	${ }^{380}$	
Ingalls St (st Camille to end)	Replace 200 LF of 1.5 inch Cl I with 4 inch DIPCL .		$\frac{\mathrm{DW} 20-157}{\text { DW20.157 }}$	${ }_{\text {Averine }}$	${ }_{\text {Approval }}$	${ }_{\text {c, }}^{6,000}$	${ }_{\text {Yesese }}^{\text {Yes }}$	Nashua	Yes		27.1	${ }_{3}^{163}$	
Nye Avenues Copp Street			$\frac{\text { DW } 20-157}{\text { DW20-157 }}$	${ }_{\text {Averaing }}$ Avaitn	${ }_{\text {Approval }}^{\text {Aproval }}$	${ }_{\text {18,000 }}^{18,000}$	${ }_{\text {Yes }}^{\text {Yes }}$	${ }_{\text {Nashaa }}$	Yes		${ }_{2}^{27 .}$	$\stackrel{{ }_{4}^{358}}{488}$	
Gray Avenue	Replace 360 LF of 6 inch CI with 6 inch DIPCL.		DW20-157	Avaitin	Approval	15,000	Yes	Nastua	Yes		27.	407	
${ }^{2022}$ Nashua City Sewer Projects	To be detemined (Pavin) ${ }^{\text {a }}$,		DW20-157	Avaitin	Approval	$\xrightarrow{200,000}$	${ }_{\text {Yes }}$	Nashua	Yes		${ }^{277}$	${ }_{5.426}^{5125}$	
Fairiew Street Water Main Replacement Additional Paving Carry over			$\frac{\text { DWv20-157 }}{\text { DW } 2 \text {-157 }}$	Avaitin	${ }_{\text {Approval }}^{\text {Approxal }}$	47,000	${ }_{\text {Yes }}^{\text {Yes }}$	$\frac{\text { Nashua }}{\text { Nashas }}$	Yes		27.15	1,275 10,52	
Boster Station Replacementupgrade	To be determined		DW20-157	Avaitin	Approval	80,000	Yos	Nashua	Yes		27.1	${ }_{21,704}$	
${ }^{\text {Water Main Replacement }}$	To be determined		$\frac{\mathrm{DWW} 2-157}{\text { DW20 }}$	Averitin	${ }_{\text {Approval }}$	3,700,000	$\mathrm{Y}_{\text {Yes }}^{\text {Yes }}$	Nashua	Yes		27.1	${ }^{10,3,31}$	
2023 Nastua City Sewer Projects Merrimack RiverWatershed Council	To be determined Grant Math with other Stakeholders S 40 k for five years.		DW20-157	${ }_{0.1}^{\text {dSveritin }}$	Approval	900,000	$\frac{\mathrm{Ycs}}{\text { No }}$	${ }_{\text {Nashas }}$	$\frac{\text { Yes }}{\text { No }}$		${ }^{27} 2$.	24,47	
Trimble GPS and Monitoring Equipment	Level Monitors, Pressure Monitors and Flow Monitors		DW20-157	Avaitin	${ }_{\text {Approval }}$	32,000	$\xrightarrow{\text { Yes }}$	Nerrimack	No		${ }^{28}$	${ }_{5}^{5}$	
Investment it Developer Services Replace nngineering SUV			$\frac{\mathrm{DD} 20-157}{\mathrm{DW} 20.157}$	${ }_{\text {Avaiting }}$	Approval	边, 30,000	${ }_{\text {Yes }}^{\text {Yes }}$	${ }_{\text {Varaus }}$ Varaus	Yes		${ }_{2}^{28 .}$	${ }_{8, ~}^{2,65}$	
Replace Engineering Pickup	Replace venicle with high mileage.		DW20-157	Avaitin	Approval	40,000	No	${ }_{\text {Various }}$	Yes		${ }_{28}^{28}$	$\stackrel{1,138}{1.138}$	
bester ump repacementrieuild			$\frac{\mathrm{DD} 20-177}{\text { DW20-157 }}$	Avainn	${ }_{\text {approval }}^{\text {Aproval }}$	${ }^{\text {4,0,000 }}$	${ }_{\text {Yes }}^{\text {Yes }}$	${ }_{\text {Varsios }}^{\text {Various }}$	Yes		${ }_{2}^{28 .}$	${ }_{4,1,188}^{427}$	
Chemical Feed pump replacements	Chemical Feed pump replacements		DW ${ }^{\text {D } 2-157}$	Averitin	${ }_{\text {Approval }}$	15,000	$\mathrm{Y}_{\text {Yes }}^{\text {Yes }}$	Various	Yes		${ }_{28}^{28}$	${ }^{4275}$	
			$\frac{\mathrm{DD} 20-157}{\mathrm{DW} 20.157}$	Avaring	$\frac{\text { Approval }}{\text { Approval }}$		${ }_{\text {Yes }}^{\text {Yes }}$	${ }_{\text {Nastious }}$	${ }_{\text {Yes }}^{\text {Yes }}$		${ }_{2}^{2.1}$	$\stackrel{15,505}{427}$	
Misc. Structural Ipprovements	Misc. Structural Iprovements		$\frac{\text { DW } 20-157}{\text { DW }}$	Avexitin	${ }_{\text {Approval }}$	${ }^{20,000}$	${ }_{\text {Yes }}$	${ }^{\text {Various }}$	Yes		${ }_{28}^{28.4}$	${ }_{5}^{569}$	
Miscellaneous Equipment Purchased Miscellaneus SCADAElectical	Miscellaneous Equipment Purhased Miscellaneus SCADAElectical		$\frac{\text { DW } 20-157}{\text { DW20.157 }}$	Averitin	${ }_{\text {Approval }}^{\text {Approval }}$	${ }_{\text {20,000 }}^{30,000}$	${ }_{\text {Ycs }}^{\text {Yos }}$	${ }_{\text {Various }}^{\text {Various }}$	$\xrightarrow{\text { Ycs }}$		${ }_{28}^{28 .}$	${ }_{\text {¢ }}^{864}$	
Well Renabilition ${ }_{\text {WTP }}$	Well Renabilition		$\frac{\text { DW } 20-157}{\text { DV20.157 }}$	Avaiting	${ }_{\text {Approval }}$	${ }_{\text {50,00 }}$	${ }_{\text {Yss }}^{\text {Yes }}$	Various	Yes		${ }^{28}$	${ }_{1,273}^{1,27}$	
Purchase new lab equipment	Purchase new lab equipment.		${ }_{\text {DW } 20-157}$	${ }_{\text {Avaitin }}$	${ }_{\text {Approval }}$	20,000	${ }_{\text {Yes }}$	${ }_{\text {Nashas }}^{\text {Nashas }}$	$\xrightarrow{\text { Nos }}$		${ }^{27}$	$\stackrel{1}{5}$	
Miscellaneous Fencing and Security proects	Miscellaneous Fencing and Security projects		DW20-157	Avaiting	Approval	${ }_{\text {10,000 }}$	Yes	Various	Yes		28	${ }_{5}^{5}{ }^{28}$	
Replace Venicle Carbon media chageut-3 3 \& 4 (Fall of 2023)	Replace High Mileage Venicie.		$\frac{\text { DW } 20-157}{\text { DW20-157 }}$	Averitin	${ }_{\text {Approval }}^{\text {Approval }}$	${ }_{\text {50, }}^{50,000}$	${ }_{\text {Yes }}^{\text {Yes }}$	${ }_{\text {Nashua }}$	${ }_{\text {Nos }}^{\text {Nos }}$		${ }_{2}^{27.1}$	${ }_{13,565}$	
Replace Venicic	Replace High M Mieage Vehicle.		DW20-157	Avaiting	Approval	40,00	Yos	Nashua	No		${ }^{27}$		
Misc Hardware	Misc Hardware Misc software			O. 0.1 DSRR		$\xrightarrow{20,000} 12$	No	${ }_{\text {Nashua }}$	No		${ }_{2}^{27.7}$	s	
Network Hardware infrastucture improvements	Update aging network infustructure.		$\mathrm{DW} 20-157$	$\frac{\text { Avaiting }}{}$	Approval	80,000	Yes	Nashua	No		27.		
Major Software Replacement Project Munis Enhancements	Munis Enhancements			$\frac{0.1}{0.1 \text { DSRR }}$		$\underset{\substack{\text { 6,0,00 } \\ 35,000}}{ }$	$\frac{\mathrm{No}}{\mathrm{No}}$	${ }_{\text {Nashluas }}^{\text {Amhest }}$	No			$\frac{5}{8}$	
Misc Computer replacements		,	析	0.1 DSRR	-	IS	No	Nashtua	No		27.	${ }^{5}$	

$\begin{aligned} & \text { Total Proiected Bond funded PWWW QCPAC Capex for 2021- }\end{aligned}$ \$ $\quad 9,832,000$

[^0]\qquad

분

\cdots

TANK IndUSTRT CONSULTANTS

EVALUATION OF THE
 4,500,000 GALLON STEEL GROUND STORAGE TANK
 "KESSLER FARM TANK"
 NASHUA, NEW HAMPSHIRE
 FOR
 PENNICHUCK WATER WORKS
 PENNICHUCK, NEW HAMPSHIRE

SUBJECT:

The subject of this report is the field evaluation of the 4,500,000 gallon steel ground storage tank in Nashua, New Hampshire. The tank was owned by the Pennichuck Water Works, Inc., and was known as the "Kessler Farm Tank." The field evaluation was performed on October 17, 2014 by Gregory P. Cannon and Adam C. Miner of Tank Industry Consultants. The Owner's representative on the site at the time of the field evaluation was Victoria Hawkes. The column and rafter supported roof tank was of welded steel construction. According to information on the tank nameplate, the tank was built in 1987 by Advance Tank Company under contract number 5086 and had a capacity of $4,500,000$ gallons. The tank nameplate also stated that the tank diameter was 120 ft , and the nominal shell height was 54 ft . Cursory calculations indicated the tank was designed using an alternative design basis which includes using higher allowable stresses and joint efficiencies.

OBJECTIVE:

The purpose of this evaluation was to determine the condition of the tank interior, exterior, exposed foundation, and accessories. As the tank could not be drained for the field evaluation, the interior was evaluated by a remotely operated vehicle (ROV). Therefore, only the shell and floor surfaces visible by use of the ROV were observed. The purpose of this report is to present the findings of the evaluation and to make recommendations for recoating, repairing, corrosion protection, and maintenance. Budget estimates for the work, anticipated life of the coating and the structure, and the replacement cost of the tank are also included.

AUTHORIZATION:

This evaluation and report were authorized in the Tank Industry Consultants Standard Form of Agreement dated October 8, 2014 and signed by John Boisvert.

EXECUTIVE SUMIMARY:

The exterior coating system appeared to be providing very little corrosion protection to the majority of the steel surfaces. The exterior of the tank should be repainted within the next year. The visible coating on the interior surfaces of the tank appeared to be in fair overall condition with corrosion and extensive staining noted. Corrosion and metal loss is of even greater concern since the tank appears to have been constructed with a high-strength steel. Tank Industry Consultants recommends that the interior surfaces of this tank should be recoated in 2 to 3 years. However, it would likely be most economical to repaint the exterior and interior at the time same time.

ANSI/OSHA and Safety-Related Deficiencies: There were OSHA and safety-related deficiencies on this tank. These deficiencies included:

- cable and conduit were attached to the ladder which could interfere with the unrestricted use of the side rails by the climber (29 CFR 1910.27(b)(2)), and
- the gap between the roof and toe bar was greater than the maximum allowed $1 / 4 \mathrm{in}$. (29 CFR 1910.23(e)(4)).

If the Owner wishes to fully comply with OSHA and safety-related standards, it is recommended that these deficiencies be rectified.

AWWA and Operational Deficiencies: An operating deficiency was noted at the time of the field evaluation:

- the overflow pipe did not have a sufficient air break.

The safety-related, sanitary, and operating deficiencies listed above are not intended to be a complete list of deficiencies on this tank. The Owner should refer to the complete report text and accompanying photographs for a complete account of all observed deficiencies.

This evaluation and the reporting of the condition of this tank do not warrant the original structural condition of the tank or any of the original design for seismic loadings. Likewise, recommendations for this tank do not include modifications which may be required for compliance with present structural codes.

PHOTOGRAPHS:

Color photographs were taken of the visible portions of the foundation, the tank interior and exterior and are included as a part of this report. The significant photographs are keyed to the observations. Photographs taken from the ROV video are included as a part of this report.

NOMENCLATURE:

The terms used in describing the various components of steel water tanks are unique to the industry. In fact, the terms vary from firm to firm and from person to person. In an attempt to define the terms used in this report, a sketch of the general type of tank covered is included at the end of the narrative portion of this report. Each horizontal row of steel plates on the tank is referred to as a "shell ring" or "ring." To aid in referencing the shell rings, the bottom ring is referred to as shell ring 1 and the top ring is shell ring 7. Warning: Some appurtenances on this tank may be referred to as erection or rigging attachments, lugs, or brackets. This does not mean that they are safe for rigging. Each attachment for each tank should be evaluated on an individual basis by a structural engineer or an experienced rigger before being used. These devices may have been intended for only the original erectors and painters to use with specialized equipment.

ADHESION TESTS:

All adhesion tests performed during this evaluation were done in general accordance with ASTM D3359. The results are reported herein using the ASTM scale. The ASTM scale is a relative scale to rate adhesion from 0 to 5 with 5 being the best. A table of adhesion test results classification is included with this report following the sketch of the tank.

HEAVY METALS TESTS:

Samples of the exterior and interior coating systems were sent to a laboratory for inductively coupled plasma-atomic emission spectrometry analyses. The test results were as follows:

	Cadmium		Chromium		Lead	
	$\mathrm{mg} / \mathrm{kg}$	percent	$\mathrm{mg} / \mathrm{kg}$	percent	$\mathrm{mg} / \mathrm{kg}$	Percent
Exterior	<25	$<0.0025 \%$	<250	$<0.025 \%$	<250	$<0.025 \%$
Interior	<25	$<0.0025 \%$	<250	$<0.025 \%$	<250	$<0.025 \%$

Tank Industry Consultants performs this test only to determine if there is lead, cadmium, or chromium present in the coating samples. To limit damage to the existing coating, only small areas were tested. The small number of samples taken and the difficulty of retrieving all primer from the steel profile may cause the tests performed to not accurately represent the total coating system. Variations in thickness, types of coatings applied, and the interim cleaning and painting operations will also affect the actual readings. The reliability of the results is also dependent on the amount of primer included in the sample. The Consumer Product Safety Commission specifies that an amount greater than 0.06% lead is considered potentially hazardous. Additional testing to determine the amount of leachable contaminants present in the spent cleaning debris will need to be performed following cleaning operations at the time of repainting. Results from the laboratory analysis are included following the adhesion tables.

ULTRASONIC THICKNESS MEASUREMENTS:

(all readings were taken through coating)
Roof Plates: 0.263 in . to 0.265 in .

Shell:

Ring \#7:	0.319 in. to 0.322 in.
Ring \#6:	0.488 in. to 0.496 in.
Ring \#5:	0.555 in. to 0.564 in .
Ring \#4:	0.603 in . to 0.616 in .
Ring \#3:	0.682 in. to 0.692 in.
Ring \#2:	0.729 in. to 0.731 in.
Ring \#1:	0.797 in. to 0.806 in.,
Plate:	59 in to 0.36

Bottom Plate:
0.359 in. to 0.360 in.

OBSERVATIONS:

A. Foundation and Site

SITE:

Size: approx. 200 ft diameter
Fence:
Type: chain link, with 3 strands of barbed wire Height: 6 ft
Gates:
Number: 2
Northeast Gate: 19 ft wide
West: 20 ft wide
Locked: yes
Nearest Structures:
Type: communications building
Direction: east
Distance: approx. 19 ft
Type: propane tank
Direction: southeast
Distance: approx. 22 ft
Type: residences
Direction: east
Distance: approx. 100 ft
Nearest Overhead Power Lines:
Direction: west
Distance: approx. 49 ft

FOUNDATION:

Type: concrete ringwall
Projection Above Grade:
North: 3-1/2 in. to 6-1/2 in.
South: 5-1/2 in. to 7-1/4 in.
East: $4-1 / 4$ in. to $5-1 / 2$ in.
West: $5-1 / 4 \mathrm{in}$. to 7 in .
Grout: 3/4 in. to $1-1 / 8 \mathrm{in}$.
Sealant: none visible
Fiberboard: none visible

1. Site Location: The tank was located off of Kessler Farm Road in Nashua, New Hampshire. The site was located in a wooded and residential area with the nearest residences located east of the site. Overhead power lines were located west of the site. (See photos 2-3)
2. Site Conditions: The tank was surrounded by an approximately 14 ft wide asphalt skirt. The site was sloped towards a drainage ditch around the tank. The tank site was enclosed by a chain link fence which was topped with barbed wire and had two locked gates on the northeast and west sides of the site. Vegetation had grown into the site fence. A communications building and propane tank were located on the site south of the tank, and a pump house was located on the west side of the site. (See photos 1, 4)
3. Foundation: The tank foundation appeared to be a concrete ringwall. Several areas of cracking and isolated areas of spalling were observed in the concrete foundation at the time of this field evaluation. The foundation did not precisely exhibit the AWWA recommended 6 in . to 12 in . projection above grade. The foundation had been coated, and the coating had peeled in several areas. Mildew was also observed. An unused cable and clip were lying on the foundation. (See photos 5-8)
4. Grout: There was a pad of grout between the tank bottom plate and the concrete foundation. The grout appeared to be in fair to poor condition as popping and cracking were observed. The grout had been painted. No sealant was located at the grout-to-bottom plate interface. (See photos 5-8)

B. Exterior Surfaces

DESCRIPTION:
Construction: welded steel
Diameter: approx. 120 ft
Shell Height: approx. 54 ft
Shell Rings: 7
Roof Type: column and rafter supported
NAMEPLATE:
Location: above shell manhole on west side of shell
Advance Tank Company AWWA D100 C 19875086 Year Contract Heat Treat. 120-0 54-0 Diameter Height 4.5 Mils. Gals. Nom. Capacity Gals. Material

ANCHOR BOLTS: none
BOTTOM PLATE PROJECTION: $1-1 / 4$ in. to $1-1 / 2$ in. from shell

SHELL MANHOLES:

Number: 2
Locations: east and west sides of shell ring \#1
Type: single-crab
Size: 24 in. diameter
Neck: 11-1/4 in. projection from shell x 1-3/8 in. thick
Bolt: 1 in . diameter $\times 14-1 / 2 \mathrm{in}$. long
Cover Plate:
Size: 27-1/4 in. diameter x 1 in. thick
Hinged: yes, interior

OVERFLOW PIPE:

Size: 16 in. diameter
Elastomeric Check Valve: yes
Brackets:
Size: 3 in. $x 5 / 8$ in., flat bar $\times 12-1 / 2$ in. long
Spacing: approx. 8 ft
Drain Pipe: 16 in. diameter

EXTERIOR LADDER:

Number of Rungs: 43
Distance From Ground to Lowest Rung: approx. 12 ft 5 in .
Width: 18 in.
Side Rails: $2-1 / 2 \mathrm{in}$. x $3 / 8 \mathrm{in}$., flat bar
Rung Size: $3 / 4 \mathrm{in}$. diameter
Spacing: 12 in . on center
Toe Room: 7-3/4 in.
Brackets:
Construction: welded
Size: 3 in. $\times 1 / 2$ in., flat bar $\times 8$ in. long
Spacing: approx. 8 ft
Safe-Climbing Device: notched-tubular rail
Safety Cage: none
Vandal Deterrent:
Type: aluminum ladder gate
Length: 8 ft
Locked: yes

ROOF SAFETY RAILING:

Handrail:
Height: 42 in.
Size: $2-1 / 2$ in. $\times 2-1 / 2$ in. $x 1 / 4 \mathrm{in}$, angle
Uprights: $2-1 / 2$ in. $\times 2-1 / 2 \mathrm{in} . \times 1 / 4 \mathrm{in}$., angle
Mid-Rail: 2-1/2 in. x 2-1/2 in. x $1 / 4 \mathrm{in}$., angle
Toe Bar:
Size: 4 in. x $1 / 4$ in., flat bar
Height Above Roof: 4-5/8 in.
Access Opening:
Width: 27-1/2 in.
Closure Chains: yes

ROOF OPENINGS:

Manholes \#1 and \#2:
Locations: south and west sides of roof
Size: 24 in. diameter
Type: hinged
Curb: 6 in.
Welded: exterior only
Overlap: 2 in.
Locked: yes
Manhole \#3:
Size: 33-1/2 in. x 41-1/2 in.
Type: hinged
Curb: 6 in.
Cover Overlap: 2 in.
Locked: yes
Roof Vent:
Type: clog-resistant
Neck Height: 5-3/4 in.
Neck Diameter: 24 in.
Screen:
Orientation: horizontal
Size: 16×16 mesh
Cover: 48 in. diameter

ROOF OBSTRUCTION LIGHTS:

Type: double-globe
Location: on roof vent
Manufacturer: Hughey \& Phillips, Inc.
Model Number: OB22
Operational: unknown
Photoelectric Cell: not found

EXTERIOR COATING AND METAL CONDITION:

	Coating Thickness		Approx. \% Failure to		Adhesion	Metal Loss	
	Range	Typical	Underlying Coating	Rust		Typical	Deepest
Shell	7 mils to 19.5 mils	11.5 mils	Neg.	80%	2 S	Neg.	Neg.
Roof	6.5 mils to 15 mils	10 mils	Neg.	70%	0 T	Neg.	Neg.

Adhesion	Key to Table		
	5 (very good)	$\mathrm{T}=$ Topcoat to Underlying Coating	Neg. $=$ negligible
	4 (good)		
	3 (fair)	S = Primer to Steel	
	2 (poor)		
	1 (very poor)		
	0 (very poor)		

1. Exterior Coating Condition: The coating on the exterior of the tank appeared to be in poor condition with widespread areas of rust staining observed. The exterior coating exhibited very poor to poor adhesion to the underlying coating and steel.
2. Bottom Plate: The tank bottom plate extension appeared to be in nearly its original condition at the time of the field evaluation. Widespread areas of corrosion and peeled coating were noted. A grounding cable was located on the west side of the bottom plate. An unused clip and cable were lying on the bottom plate. (See photos 5-8)
3. Shell Condition: The contour of the tank shell was irregular as peaking, banding, and flat spots were noted. The coating was in poor condition with extensive areas of rust staining and corrosion noted. The topcoating had chalked, checked, and peeled. Debris was observed in the coating. The coating exhibited poor adhesion to the steel. A tank nameplate was attached to a bracket which was located on the west side of shell ring \#1 above the shell manhole. A cabinet was located on the west side of the bottom shell ring which had a lock. An approximately $9 \mathrm{ft} \times 9 \mathrm{ft} 6 \mathrm{in}$. welded steel door sheet was located on the lower side of the west shell. The door sheet corners were rounded, and the door sheet was rusty. An unused cabinet bracket and a threaded and plugged coupling were located on the west side of the shell. (See photos 9-16, 24)
4. Shell Manholes: The tank was equipped with two single-crab circular manholes located on the west and east sides of the tank. The shell plate around the manholes was not equipped with a reinforcing plate. The manhole covers were equipped with hinged support arms located on the interior of the tank. (See photos 15,17)
5. Overflow Pipe: There was an operational deficiency noted: the overflow pipe air break was insufficient. The overflow pipe exited through the top shell ring and extended down the shell before discharging within a drain pipe. The discharge end of the overflow pipe was equipped with an elastomeric check valve which was partially located in the drain pipe. The pipe was equipped with welded steel brackets which appeared to be in their original structural condition at the time of this field evaluation. Corrosion was observed on the overflow pipe. Coaxial cables extended up the overflow pipes to three antennas attached to the upper part of the overflow pipe. (See photos 18-19, 25)
6. Exterior Shell Ladder: There was a safety and OSHA deficiency noted: a coaxial cable and conduit were attached to the ladder which could interfere with the unrestricted use of the side rails by the climber. The ladder was equipped with a notched-tubular safe-climbing device. The exterior ladder was welded to brackets which were welded to the shell. The exterior ladder and brackets appeared to be in nearly their original structural condition at the time of this field evaluation. The ladder was equipped with a ladder gate-type vandal deterrent which was locked. The vandal deterrent included side panels which were rusty. (See photos 20-23)
7. Roof Safety Railing: There was a safety-related or OSHA deficiency noted: the gap between the roof and toe bar was greater than the maximum allowed $1 / 4 \mathrm{in}$. The roof was equipped with a safety railing at the roof access adjacent to the roof manhole. The safety railing was constructed from welded angle and flat bar members. An antenna was attached to the safety railing on the west side of the roof. (See photo 26)
8. Roof Condition: The contour of the roof was adequate at the time of this evaluation. The roof coating was in very poor condition with widespread corrosion noted. The coating had peeled, cracked, and checked, and it exhibited very poor adhesion to the underlying coating. Numerous threaded and plugged couplings were located in the roof. (See photos 28, 31-35)
9. Obstruction Lights: There was a double-globe obstruction light located on the roof vent. Conduit extended along the roof to the light. The lights were not illuminated at the time of the field evaluation, and a photoelectric cell was not found. The lights were located below the antenna level height. (See photos 36, 38)
10. Roof Manholes: The roof was equipped with three manholes which were equipped with hinged and locked covers. The manholes were located on the west, south, and northeast sides of the roof. The roof manholes were welded on the exterior only. Corrosion was present on the manhole surfaces. (See photos 26-30)
11. Roof Vent: The roof was equipped with a clog-resistant vent in the approximate center of the roof. The vent pallet and screening were in good condition at the time of the field evaluation. (See photos 36-37)

C. Interior Surfaces

ROOF SUPPORT SYSTEM:

Main Rafters:

Number: 32
Size: 8 in. $\times 2$ in., channel
Attachment Clips:
Size: 4 in. $x 4$ in. $\times 3 / 8$ in., angle
Bolts: $5 / 8$ in. diameter
Secondary Rafters:
Number: 64
Size: 12 in. x 4 in., I-beams
Center Hub: approx. 5 ft diameter
Center Column:
Type: two channels intermittently welded together to form a T-shape Channel Size: 11 in . and 3-1/2 in.
Outer Column:
Number: 8
Type: two channels intermittently welded together to form a T-shape Channel Size: 11 in . and 3-1/2 in.

TOP SHELL ANGLE:
Size: 3 in. x 3 in. $\mathrm{x} 3 / 8 \mathrm{in}$.
Orientation: leg out
INTERIOR LADDER: none

CATHODIC PROTECTION: none

OVERFLOW:

Inlet Type: weir box
Location: approx. 1 ft below the roof-to-shell connection

INLET/OUTLET PIPE:

Size: 24 in. diameter
Protective Cover: yes, grate-type

INTERIOR COATING AND METAL CONDITION:

	Coating Thickness		Approx. \% Failure to		Adhesion	Metal Loss	
	Range	Typical	Primer	Rust		Typical	Deepest
Roof	11 mils to 19 mils	13.5 mils	Neg.	$<1 / 2 \%$	4 S	Neg.	Neg.
Shell	11 mils to 26.5 mils	15.5 mils	Neg.	$<1 / 2 \%$	4 S	Neg.	Neg.

Adhesion	Key to Table		
	5 (very good)	T = Topcoat to Underlying Coating	Neg. $=$ negligible
	4 (good)		
	3 (fair)	S = Primer to Steel	
	2 (poor)		
	1 (very poor)		
	0 (very poor)		

1. Interior Coating Condition: The tank was not drained for the field evaluation, and the interior evaluation was performed by an ROV. The evaluation of the floor was significantly limited by the presence of silt which prevented most of the floor surfaces from being visible. The coating on the interior surfaces of the tank appeared to be in fair overall condition with corrosion and extensive staining noted. The interior coating exhibited good adhesion to the steel.
2. Roof Condition: The coating on the roof plates appeared to be in fair overall condition. Minor corrosion and rust staining were noted along the top of the roof structure members, along the roof plate lap seams, and along the structure member edges. The interior roof support structure consisted of a center column, one circle of outer columns, an inner and outer set of roof rafters, and circumferential girders. The inner ends of the roof rafters were located on top of a center hub which was located at the top of the center column. The outer columns supported the circumferential girders on which the intermediate ends of the radial roof rafters rested. The outer ends of the rafters were bolted to steel clips which were welded to the shell. Corrosion and rust staining were observed at this connection. Seam sealant was located along the roof support structure members and along the roof-toshell connection. Corrosion and rust staining were located along the roof-to-shell connection. (See photos 39-48, 58-61)
3. Shell Condition: The coating on the shell interior appeared to be in fair overall condition. There were extensive areas of rust staining noted, and the shell coating was discolored due to mineral staining from the water. A top shell angle was located around the roof-to-shell connection. Rust staining had streaked down from the roof-to-shell connection and rafter ends onto the upper shell surfaces. (See photos 49, 51-57)
4. Overflow Pipe: The overflow pipe was equipped with a weir box inlet. The location of the overflow inlet was such that the top capacity level was below the shell-to-roof connection. Rust staining was located on the interior of the weir box. (See photo 50)
5. Bottom Plate Condition: The floor could not be viewed due to a layer of silt. (See photo 56-57)
6. Inlet/Outlet Pipe: The inlet/outlet pipe was located in the tank floor. The inlet/outlet pipe was equipped with a grate cover. Corrosion was present on the pipe projection. (See photo 60)

RECOMMENDATIONS:

A. Foundation and Site

1. Site Maintenance: The site should be regraded so that the top of the foundation projects a minimum of 6 in . to a maximum of 12 in . above grade and so that proper drainage away from the foundation occurs. The vegetation should be removed from the site fence. Appropriate precautions should be taken for the work operations around the propane tank.
2. Tank and Site Security: Water tanks have been defined by some courts under certain circumstances as attractive nuisances. As such, there may be a significant potential liability to the Owner for injury to persons on the tank and tank site, even if access is not authorized. Recent events have prompted the entire water industry to consider measures that inhibit intentional acts that could threaten the water supply. A review of the security requirements for the tank and site is recommended to confirm that the existing measures are consistent with the Owner's security requirements for their water system. Primary tank and site security should be focused on eliminating, preventing, and detecting unauthorized access to the tank. Such security measures might include routinely and periodically verifying all manholes and gates are locked, and all exterior ladders have suitable deterrents. Other security measures might include installing no-trespass signs, site lighting, motion detectors, surveillance cameras, installing alarms on gates and tank manholes, and arranging more frequent site visits by law enforcement agencies.
3. Antennas: The number and placement of the antennas, cables, and other associated equipment mounted on this tank will complicate the repainting of the tank. If left in place the antennas, cables, and related equipment may be damaged even though steps are taken to protect the components from blasting and other work related activities. Leaving this equipment in place will also increase the cost and duration of the project. If possible, it is recommended that the antennas and antenna cables be removed prior to the work and reinstalled \{away from the ladders] at the completion of the project. At a minimum, the equipment should be de-energized during work to minimize the workers exposure to radio frequencies (RF). The contract between the Owner and the antenna companies will need to be reviewed to determine if removal and de-energization is possible and who bears responsibility for the cost and liability of the equipment removal. If possible, lease requirements regarding all equipment relocation should be written in advance of all rehabilitation operations. If the equipment cannot be removed, it will need to be determined who bears the cost and liability for removing or replacing any equipment that becomes damaged during work operations. Additional considerations during work operations will also be required including worker exposures to RF emissions which may shorten workdays; how to place and construct containment to prevent fugitive dust emissions; and adequately cleaning and painting in the hard to reach areas created by the locations of this equipment.
4. Foundation: When the tank exterior is repainted, any unsound concrete should be chipped to sound material and the concrete should be brush-off blasted. Any deteriorated areas or voids found should have a bonding agent and a vinyl emollient modified concrete patching mortar applied to build up the surface to its original contour. The concrete should then be painted with a concrete sealer. The unused cable and clip should be removed from the foundation.
5. Grout Maintenance: All loose grout should be chipped away to solid material when the tank is empty. Any shim plates which can be easily removed should be taken out. Any voids in the grout should be filled with a nonshrinking, nonstaining, structural grout material. The grout should be placed as far back under the bottom plate as possible and squared off vertically with the edge of the bottom plate. Any gap between the steel bottom plate and the grout should be filled with a flexible sealant.

B. Exterior Surfaces

1. Life of the Exterior Coating: The exterior coating system appeared to be providing very little corrosion protection to the majority of the steel surfaces. Tank Industry Consultants believes that the exterior of the tank should be repainted within the next year. Due to the very poor to poor adhesion of the existing exterior coating, spot cleaning and topcoating is not recommended. The exterior coating system should be evaluated immediately prior to preparing specifications to determine if the coating adhesion is still adequate to accept a topcoat.
2. Coating Testing: Prior to preparation of specifications for the cleaning and coating of the exterior of the tank, samples of the exterior coating system should be subjected to laboratory analysis to test for ingredients which may at that time be subject to regulations concerning their handling and disposal.
3. Cleaning: When the exterior is to be cleaned, all varieties of containment should be investigated. Containment of the wind-blown debris and paint droplets may be required due to the proximity of the adjacent residences.

4. Recommended Coating System:

a. Complete Cleaning and Repainting: The optimum long-life coating system presently available for this site is an epoxy-polyurethane coating system. Properly formulated and applied polyurethanes have good resistance to condensation, mildew, and chipping. The polyurethanes also have excellent color and gloss retention and the longest expected service life of any of the common exterior tank coatings. The typical life of a properly applied epoxypolyurethane coating system is approximately 15 to 20 years. These coatings are also presently manufactured to meet current VOC requirements.
b. Coating Application: The entire tank exterior should be cleaned to the equivalent of an SSPC-SP 6, Commercial Blast Cleaning and have an epoxy-primed, epoxy intermediate and polyurethane finish coating system applied. However, care must be taken during the application of this particular coating system because this coating does have poor dry-fall characteristics, and potential damage to the surrounding property must be taken into consideration. The polyurethane coatings also require close monitoring of temperature and humidity during application.
5. Effective Service Life: Tank Industry Consultants defines the life of a coating as the amount of time before repainting becomes necessary due to coating failure and corrosion. During the coating life the Owner should expect the coating to lose its gloss, start to chalk, show signs of weathering, and possibly some rust staining. Future touch-up may be required on isolated coating
failures. If aesthetics are a concern, the Owner may have to topcoat the repainted tank prior to the end of the expected service life. However, future topcoating would be less expensive than complete cleaning and recoating and could delay the next complete cleaning and repainting for many years.
6. Other Systems: With air emission volatile organic compounds (VOC) restrictions being put in place around the nation, alternative coating systems may become available which would be viable options for this tank. The Owner should review the available systems prior to preparing specifications for the recoating project.
7. Coating Curing: It would be more economical to paint the tank exterior at the same time the interior is painted, since the tank must be drained while the exterior is painted, and the applied coatings cure. This will also reduce mobilization and observation costs.
8. Rehabilitation Schedule: To obtain the lowest possible prices for the work outlined in the recommendations, the Owner should have the specifications prepared and the work bid in the spring, with the work scheduled to start in early summer (if possible).
9. Grinding and Bracket Removal: Any unused brackets or erection lugs should be removed prior to the exterior repainting. Any weld burrs, weld spatter, or erection scars should be ground off to provide a smooth surface for the application of the coating.
10. Nameplate: The tank nameplate should be removed for the cleaning and coating of the tank. The nameplate should be cleaned and reattached to the tank using the existing bracket.
11. Electrical Apparatus: All unused electrical conduit, antennas, fixtures, electrical metering equipment, and control cabinets should be removed from the tank and tank site. All required equipment should be repaired and maintained in accordance with the National Electric Code (NEC).
12. Existing Shell Manholes: At the time of recoating and repairs, the gaskets for the shell manholes should be replaced, and the hinged support arms relocated to the exterior.
13. Additional Shell Manholes: Tank Industry Consultants interprets OSHA standards as defining a water storage tank as a confined space, and as such, a sufficient means of emergency egress and ventilation during cleaning and coating operations is required. Therefore, the tank should be equipped with two new hinged shell manholes. The additional manholes and covers should be 30 in. in diameter, should be designed in accordance with current industry and safety standards, should be hinged, and should be located approximately 90 degrees from the existing shell manholes.
14. Overflow Pipe: The overflow pipe should be modified so that it has an approximately 12 in. to 24 in. air break.
15. Exterior Ladder: The electrical conduit and cables should be relocated away from the side rails.
16. Roof Safety Railing: The toe bar should be lowered so the gap between it and the roof is less than $1 / 4 \mathrm{in}$.
17. Clog-Resistant Vent: The proper operation of the clog-resistant vent should be periodically verified.
18. Obstruction Lights: The Owner should file a FAA Form 7460 to verify the need for obstruction lighting on the tank. If the lighting is required, new bulbs and globes should be installed, as well as a photoelectric cell to reduce bulb maintenance costs. The lights should be relocated to be the tallest point of the tank. If the lighting is not required, the light assembly and all associated conduits and brackets should be removed.

C. Interior Surfaces

Preface to Interior Recommendations: The interior surfaces below the top capacity level were evaluated by an ROV as the Owner could not drain the tank. However, the ROV evaluation was limited by the deep layer of silt located on the tank floor rendering none of the floor coating visible. Therefore, prior to the preparation of specifications for interior rehabilitation work, the tank should be drained, washed out and thoroughly evaluated to more accurately determine the scope of work required. A complete evaluation of the interior would also reduce the number of potential change orders, and reduce the overall amount of the bids by eliminating uncertainty about the condition of the coating and steel.

1. Life of the Interior Coating: The visible coating on the interior surfaces of the tank appeared to be in fair overall condition with corrosion and extensive staining noted. Corrosion and metal loss is of even greater concern since the tank appears to have been constructed with a highstrength steel. Tank Industry Consultants recommends that the interior surfaces of this tank should be recoated in 2 to 3 years. It is recommended that when the interior is completely cleaned and repainted, an epoxy coating system should be used.
2. Coating Testing: Prior to preparation of specifications for the cleaning and coating of the interior of the tank, samples of the interior coating system should be subjected to laboratory analysis to test for ingredients which may at that time be subject to regulations concerning their handling and disposal.

3. Recommended Interior Coating System:

a. Epoxy Coating System: The optimum long-life coating system presently available for the interior of water tanks is a two-component epoxy coating system. A two-coat epoxy system is recommended for the interior of this tank. This coating system should meet the certification criteria of ANSI/NSF 61 and state department of health regulations.
b. Coating Application: When the interior is to be repainted, the entire tank interior should be cleaned to the equivalent of an SSPC-SP 10, Near-White Blast Cleaning and an epoxy coating system applied.
c. Service Life: The typical life of a properly formulated and applied epoxy coating system is approximately 12 to 15 years in immersion service. Tank Industry Consultants defines the life of a coating as the expected service life before repainting becomes necessary due to coating failure and corrosion. The Owner could extend the service life of the coating by installing, properly maintaining and operating a cathodic protection system to help protect the steel surfaces in areas which have experienced coating failure.
4. Cathodic Protection: When the tank is rehabilitated the brackets and fittings should be installed for the future installation of a cathodic protection system.
a. Type: When the cathodic protection system is installed, an ice-resistant cathodic protection system which features long-life anodes, automatic potential and current control should be specified.
b. Scheduling: After the interior is completely cleaned and recoated, the cathodic protection system should not be energized until after the First Anniversary Evaluation. The Owner should conduct washouts and evaluations approximately every 3 years to monitor the need for cathodic protection. As the interior coating begins to show signs of failure, the cathodic protection system should be energized to aid in minimizing corrosion below the top capacity level.
c. Maintenance: Cathodic protection, if used and maintained properly, will control active corrosion below the water level and extend the useful life of a coating system. It should be noted that maintenance as recommended by the cathodic protection manufacturer is required for the cathodic protection system to work properly. Without proper monitoring, the cathodic protection system may operate too high and cause the coating to blister, or the system may operate too low and not adequately protect the exposed steel surfaces.
5. Pit Welding and Pit Filling: After initial cleaning, all significant pitting which is found should be welded, and all pitting with rough edges that would make the pitting difficult to coat properly should be filled with a solventless epoxy seam sealer.
6. Rough Edges: All unused brackets should be removed from the interior and exterior surfaces at the time of the next recoating. Any weld burrs, spatter, scars or rough edges in the steel should be ground smooth to provide a better surface for coating.
7. Roof Support Structure: After abrasive blast cleaning, the roof support structure should be carefully evaluated as metal loss repairs may be necessary at areas where the metal loss was not previous visible.

ECONOMIC FACTORS:

$\stackrel{\text { Item }}{\text { Replacement of tank with a new one }} \quad \underset{\$ 5,250,000^{1}}{\frac{\text { Cost }}{\text { Life in Years }}} 7$

The following is a complete list of repairs and estimated costs for their respective recommendations found in the RECOMMENDATION section of this report.

Item		Scheduled Maintenance Repairs
Clean and Paint Exterior:	Sanitary \& Safety	
SP 6, Complete Clean, Epoxy/Polyurethane System		$\$ 375,000$
Containment		100,000
Clean and Paint Interior:		500,000
SS 10, 2-Coat Epoxy System		18,000
Cathodic Protection System		5,000
Miscellaneous Chipping and Grinding		3,000
Pit Repair Contingency		5,000
Grout Repair		10,000
Foundation Repair		
Enlarge Overflow Pipe Air Break		
Relocate Conduit and Cable from Exterior Ladder		
Lower Tower Bar on Roof Safety Railing	1,000	
Install Additional Shell Manholes (2)	1,000	
Contingency Items	16,000	

Estimates are believed to be a high average of bids that would be received in 2014.
${ }^{1}$ The replacement estimate includes costs associated with new tank fabrication and erection, foundation, painting, and engineering. The budget estimate given does not include costs associated with tank demolition, site acquisition, and distribution interruptions.

The following economic factors include only those work items that the Engineer believes to be the minimum to properly maintain this tank from an operational standpoint. Other items related to safety and risk management should be evaluated by the Owner.

Item	Cost
Clean and Paint Exterior:	
SP 6, Complete Clean, Epoxy/Polyurethane System	$\$ 375,000$
Containment	100,000
Clean and Paint Interior:	500,000
SP 10, 2-Coat Epoxy System	25,000
Cathodic Protection System	5,000
Miscellaneous Chipping and Grinding	3,000
Pit Repair Contingency	5,000
Grout Repair	10,000
Foundation Repair	1,000
Enlarge Overflow Pipe Air Break	1,000
Relocate Conduit and Cable from Exterior Ladder	2,000
Lower Tower Bar on Roof Safety Railing	16,000
Install Additional Shell Manholes (2)	15,000
Contingency Items	
	$\mathbf{1 , 0 5 8 , 0 0 0}$
Total of Engineer's Recommendations	

Tank Industry Consultants has no control over the cost of labor, materials, or equipment, or over the contractors' methods of determining prices, or over competitive bidding, or the market conditions. Opinions of probable cost, as provided for herein, are to be made on the basis of our experience and qualifications and represent our best judgment as design professionals familiar with the design, maintenance, and construction of concrete and steel plate structures. However, Tank Industry Consultants cannot and does not guarantee that proposals, bids, or the construction cost will not vary from opinions of probable cost prepared for the Owner.

Due to the numerous potential scopes of work which exist, the Owner should obtain an updated budget estimate once the final scope of work has been determined. This would enable the Owner to accurately budget monies for additional mobilization costs and damaged coating rehabilitation costs.

Engineering and resident observation costs are not included in the Total of the Engineer's Recommendations because these fees are dependent upon the scope of work to be performed. Tank Industry Consultants performs all facets of the engineering services which would be required for this project. Estimated fees for engineering and resident observation will be furnished upon request.

CLOSURE:

Brief Summation: Pennichuck Water Works owns and operates a 4,500,000 gallon ground storage tank. The exterior coating system appeared to be providing very little corrosion protection to the majority of the steel surfaces. The exterior of the tank should be repainted within the next year. Proper maintenance after completing the recommendations herein would include periodic washouts and evaluations approximately every 3 to 5 years in accordance with AWWA recommendations, and the
installation and proper maintenance of a new ice-resistant cathodic protection system with long-life anodes.

Contractor Selection: The work should be performed by a competent bonded contractor, chosen from competitive bids taken on complete and concise specifications. The coatings used should be furnished by an experienced water tank coating manufacturer, supplying the field service required for application of technical coatings.

Standards for Repairs and Coatings: All work done and coatings applied should be applied in accordance with NACE, ANSI/NSF Standard 61, the manufacturer's recommendation, AWWA D100 and AWWA D102 (latest revisions), and the SSPC: The Society for Protective Coatings.

Observation of Work: Observation of the work in progress by experienced personnel will offer additional assurance of quality protective coating application. Observations can be performed on a continuous basis or spot (critical phase) basis. The actual cost of observation may be less using spot as opposed to full-time resident observation; however, with spot observation it is often necessary for work to be redone to comply with the specifications. This somewhat lowers the quality of the finished product, lengthens the job, and is frequently a cause of conflict between the contractor, Owner, and field technician. Resident full-time observation minimizes the amount of "rework" required.

Anniversary and Maintenance Evaluations: An anniversary evaluation should be conducted prior to the end of the one year bonded guarantee. Washouts and coating, structural, sanitary, safety, and corrosion evaluations should be conducted not less than every three years.

Time Frame: If the work is not performed within the next 12 months, the structure should be reevaluated prior to the preparation of specifications and solicitation of bids.

Specifications and Bidding Documents: The recommendations in this report are not intended to be specifications on which a contractor can bid. Complete bidding documents must include general and special conditions, detailed technical specifications, and other information necessary for the competitive bidding process. To properly protect the interests of the Owner, Contractor, and Engineer; the initial evaluation, the technical specifications, legal portions of the contract documents, and the observation should be performed by the same firm or with close coordination of all parties involved.

Limitations of Evaluation: It is believed that the conditions reported herein reflect the condition of the tank as observed on the date of the evaluation, using reasonable care in making the observations, and safety in gaining access to the tank. Should latent defects be discovered during the cleaning of the structure, they should be brought to the attention of the Owner and the Engineer.

Seismic and Wind Loadings: This tank is located in or near a region of moderate seismic activity. This evaluation and the reporting of the condition of this tank do not warrant the structural condition of the tank or any of the original design for seismic loadings. Likewise, recommendations for this tank do not include modifications which may be required for compliance with present structural codes. It is possible the tank was erected in compliance with pre-existing industry standards which have since been replaced by more restrictive standards.

Hazardous Materials in Coatings: It should be taken into consideration that Federal, State, and local environmental agencies have placed stricter controls on the removal of lead-based and other heavymetal based coatings from steel structures by the use of conventional abrasive blasting techniques. The paint and blast residue may be considered to be hazardous waste depending on the concentration of lead or other particles in residue.

Please contact Tank Industry Consultants if you have any questions or comments.
Respectfully submitted,
Tank Industry Consultants

Jennifer Coon, CHMM, CET

Copyright © 2014, Tank Industry Consultants
All Rights Reserved

GROUND STORAGE TANK

Classification of Adhesion Test Results

Method A - X Cut Tape Test Approx. 1.5 in . long cuts at 30 deg. to 45 deg. apart.	Surface	Classification
No peeling or removal.		5
Trace peeling or removal along incisions.		4
Jagged removal along incisions up to $1 / 16$ in. (1.6 mm) on either side.		3
Jagged removal along most of incisions up to $1 / 8$ in. $(3.2 \mathrm{~mm})$ on either side.	X	2
Removal from most of the area of the X under the tape.		1
Removal beyond the area of the X.		0

Method B - Lattice Cut Tape Test Six parallel cuts at 2 mm apart.	Surface	Classification
The edges of the cuts are completely smooth; none of the squares of the lattice are detached.	No Failure	5
Small flakes of the coating are detached at intersections; less than 5% of the lattice is affected.	弗	4
Small flakes of the coating are detached along edges and at intersections of cuts. The area affected is 5% to 15% of the lattice.	$\underset{~ \# ~ \# ~}{\# \#}$	3
The coating has flaked along the edges and on parts of the squares. The area affected is 15% to 35% of the lattice.		2
The coating has flaked along the edges of cuts in large ribbons and whole squares have detached. The area affected is 35% to 65% of the lattice.		1
Flaking and detachment worse thon grade 1.		0

ASTM 3359 Standard Test Methods for Measuring Adhesian by Tape Test

Tank Industry Consultants

7740 West New York Street Indianapolis, Indiana 46214

Telephone - 317/271-3100
FAX - 317/271-3300

Client ID: TANK_INDUST

Tank Industry Consultants
7740 West New York Street
Indianapolis, Indiana 46214
Phone: (317) 271-3100
Attn: Julie White
FAX: (317) 271-3300

Our Lab \# 14015262-001	Your Sample ID: Int. Weir Box Sample Composition: Grab
Your Project \# 14.214.L775.002	Collection Date: 10/17/14
Your Project Name: Paint Samples	Collected By: Client
Sample Type: Paint Chips	Receipt Date: 10/29/14 10:50

Total Metals, ICP-AES	Analytical Method		Prep Method		$\frac{\text { Prep Date }}{10 / 30 / 2014}$	$\frac{\text { By }}{\text { amyers }}$	
Parameter	Result	Units	Qual	Quant. Limit	CAS \#	Analysis Date	By
Cadmium, Cd	< 25.0	$\mathrm{mg} / \mathrm{kg}$		25.0	7440-43-9	10/31/14	spotts
Chromium, Cr	<250	$\mathrm{mg} / \mathrm{kg}$		250	7440-47-3	10/31/14	spotts
Lead, Pb	<250	mg/kg		250	7439-92-1	10/31/14	spotts

Our Lab \# 14015262-002	Your Sample ID: Ext. Shell Sample Composition: Grab
Your Project \# 14.214.L775.002	Collection Date: 10/17/14
Your Project Name: Paint Samples	Collected By: Client
Sample Type: Paint Chips	Receipt Date: 10/29/14 10:50

1. Tank and site.

2. Surrounding area.

3. Surrounding area.

4. Propane tank adjacent to subject tank.

5. Tank foundation, and peeled coating and corrosion on bottom plate.
6. Grout, bottom plate, and deterioration in foundation.

7. Tank foundation, grout, and peeled coating and corrosion on bottom plate.
8. Cable and clip lying on foundation and bottom plate.

9. Unused cabinet bracket and threaded and plugged coupling.

10. Cabinet on shell.

11. Rust staining on shell.

12. Corrosion on shell and door sheet.

13. Peeled and cracked coating and corrosion on shell.
14. Rust staining on shell.

15. Shell manhole and tank nameplate.
16. Tank nameplate.

17. Shell manhole.
18. Overflow pipe, elastomeric check valve, and discharge pipe.

19. Conduit extending to antennas on overflow pipe.
20. Exterior ladder, safe-climbing device, and vandal deterrent.

21. Side panels on vandal deterrent.
22. Exterior ladder, conduits, and safeclimbing device.

23. Cables and conduits on exterior ladder.
24. Top shell angle.

25. Antenna equipment on overflow pipe.
26. Roof access, roof safety railing, roof manhole, conduit, and antenna.

27. Roof manhole.
28. Antenna and roof manhole.

29. Roof manhole.
30. Roof manhole.

31. Corrosion and conduit on roof.
32. Peeled coating and corrosion on roof.

33. Threaded and plugged coupling.
34. Roof vent and obstruction lights.

35. Underside of clog-resistant vent.
36. Obstruction lights.

37. Roof interior and support structure.

38. Roof interior and support structure.

39. Rust staining along rafter.
40. Rust staining along rafter.

41. Rafters.
42. Rafters.

43. Rafter attachment to shell.
44. Rafter attachment to shell.

45. Corrosion and rust staining on attachment clip and bolt.
46. Corrosion and rust staining along roof-toshell connection.

47. Rust staining on upper shell.
48. Overflow inlet weir box.

49. Shell interior.

50. Shell manhole interior.

51. Hinge for shell manhole cover.

52. Shell and silt on floor.
53. Shell and silt on floor.

54. Column.

55. Column.

56. Column.
57. Column base.

58. Inlet/outlet pipe.

Pennichuck Water Works
2021 PWW QCPAC filing
DW 21-023
Attachment DOE 1-13
Comparison of Electrical vs. Carbon Expenses
7/20/2021

Comparsion based on treating

11.975 MGD. This is the average daily pumpage through

 the WTP over the past 5 years350 HP for one Merrimack River Pump
0.746 Kw per HP
261.1 KW - electrical draw for one Merrimack River Pump

8000 gpm - Average flow rate for 1 MRI pump
11.52737752 MGD - Average flow rate for 1 MRI pump
\$ 0.1206 Unit electrical cost per KW-Hr - Based on 2020 WTP electrical expenses
\$ 755.73 to run one 350 HP pump 24 hours
65.56 Electrical cost per MG

286,552 Additoinal electrical cost per year to pump from the Merrimack River
\$ 2,250,000 Cost of complete Carbon Change out
1.5 Expected Carbon life with Pennichuck Brook at average PFOA levels of
6.75 Expected Carbon life with Merrimack River at average PFOA levels of MRI carbon life controlled by Taste and Odor or by loss of PFOA adsorption sits.
$\$ 1,500,000$ Annual expense of Carbon bed change out if Pennichuck Brook is used as supply
$\$ 333,333$ Annual expense of Carbon bed change out if Merrimack River is used as supply
\$ 619,885 Annual cost of using Merrimack RI (electric + Carbon)
5.23 Comparison of PB Carbon Change out to MRI electrical and Crbon Change out cost
2.4 Comparison of PB Carbon Change out to MRI electrical cost

NHDES
 Department of Environmental Services

Robert R. Scott, Commissioner
January 18, 2019

Alec Sirocki, P.E.
Tighe \& Bond
177 Corporate Drive
Portsmouth, NH 03801

Subject: Pennichuck Water Works: PWS 1621010
Merrimack River Intake Improvements
DWGB Design Review \#005383
Dear Mr. Sirocki:
The New Hampshire Department of Environmental Services (NHDES) Drinking Water and Groundwater Bureau (DWGB) has reviewed the following bid documents for the subject project. The proposed drinking water improvements include construction of a new deep river raw water intake at Pennichuck Water Works’ (PWW) existing Merrimack River intake site.

- Project Manual dated January 11, 2019
- Construction Drawings dated January 11, 2019
- Letter to Rick Skarinka, NHDES DWGB dated January 15, 2019

DWGB hereby approves the above documents subject to incorporation of the following comments. Any changes to the approved drawings or specifications by means of revised pages or addenda must be submitted to NHDES for review and approval, and issued at least five (5) days prior to bid opening.

1. All construction shall conform to AWWA standards.
2. Replace sign template with DWGTF sign. (Replace EPA logo with NHDWGTF logo.)
3. As a condition of approval of the proposed project NHDES will be requiring Pennichuck Water Works to develop a modified source water protection plan, which will be required prior to activation of the project. The source water protection staff at NHDES will contact Pennichuck directly regarding this issue.

We understand the NH Drinking Water and Groundwater Advisory Commission has awarded PWW a loan from the NH Drinking Water and Groundwater Trust Fund (DWGTF) for this project. The next step in the loan approval process is for PWW to submit a Final Loan Application.

In addition to verification of a loan being in place, DES requires submission of the following materials prior to our written authorization to award the construction contract:
A. An estimate of eligible project costs, with monthly cash flow projections, including construction engineering and other costs.
B. Evidence of advertisement for bids.
C. A tabulation of all bids which were received.

Alec Sirocki, P.E.
Page 2
D. A letter signed by the water system's Authorized Representative, indicating the name of the bidder to whom a contract will be awarded.
E. The bid proposal of the bidder to whom a contract will be awarded
F. Certification that all necessary permits, land acquisitions and easements have been secured.
G. Finding of No Significant Impact issued by the Commissioner of NHDES.

If you have any questions or comments please contact me at 271-0779 or michael.unger@des.nh.gov.
Sincerely,

Michael C. Unger, P.E.
Drinking Water and Groundwater Bureau
ec: John Boisvert, PWW

Attachment
$7 / 20 / 2021$

Libor Rate Advances						Total Borrowed All Advances	Ending Balance Availability	Unused Fee \%	Unused Fee Amount	check total	LIBOR + 1.75%	Interest Expense	Monthly Unused Fee		Monthly Interest Expense	
Day of Week	Date	Beginning Balance Availability	Advances	Payments	Total Amount Borrowed											
Thursday	12/31/20	5,450,441.20	-	-	4,549,558.80	4,549,558.80	7,450,441.20	0.00250	37.85		1.89913\%	240.01				
Friday	01/01/21	7,450,441.20	-	-	4,549,558.80	4,549,558.80	7,450,411.20	0.00250	51.74		1.89675\%	239.70				
Saturday	01/02/21	7,450,441.20	-	-	4,549,558.80	4,549,558.80	7,45,441.20	0.00250	51.74		1.89675\%	239.70				
Sunday	01/03/21	7,450,441.20	-	-	4,549,558.80	4,549,558.80	7,45,441.20	0.00250	51.74		1.89675\%	239.70				
Monday	01/04/21	7,450,411.20	-	-	4,549,558.80	4,549,558.80	7,450,441.20	0.00250	51.74		1.89675\%	239.70				
Tuesday	01/05/21	7,450,441.20	-	-	4,549,558.80	4,549,558.80	7,45,441.20	0.00250	51.74		1.89675\%	239.70				
Wednesday	01/06/21	7,450,441.20	-	-	4,549,558.80	4,549,558.80	7,450,41.20	0.00250	51.74		1.89675\%	239.70				
Thursday	01/07/21	7,450,411.20	-	-	4,549,558.80	4,549,558.80	7,450,441.20	0.00250	51.74		1.89675\%	239.70				
Friday	01/08/21	7,450,441.20	-	-	4,549,558.80	4,549,558.80	7,450,41.20	0.00250	51.74		1.89675\%	239.70				
Saturday	01/09/21	7,450,411.20	-	-	4,549,558.80	4,549,558.80	7,450,441.20	0.00250	51.74		1.89675\%	239.70				
Sunday	01/10/21	7,450,441.20	-	-	4,549,558.80	4,549,558.80	7,450,41.20	0.00250	51.74		1.89675\%	239.70				
Monday	01/11/21	7,450,441.20	695,704.88	\cdot	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Tuesday	01/12/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Wednesday	01/13/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Thursday	01/1/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Friday	01/15/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Saturday	01/16/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Sunday	01/17/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Monday	01/18/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Tuesday	01/19/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Wednesday	01/20/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Thursday	01/21/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Friday	01/22/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Saturday	01/23/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Sunday	01/24/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Monday	01/25/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Tuesday	01/26/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Wednesday	01/27/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Thursday	01/28/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736,32	0.00250	46.91		1.89675\%	276.36				
Friday	01/29/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Saturday	01/30/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36				
Sunday	01/31/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.89675\%	276.36	s	1,502.46	\$	8,200.56
Monday	02/01/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Tuesday	02/02/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Wednesday	02/03/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Thursday	02/04/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Friday	02/05/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Saturday	02/06/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Sunday	02/07/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Monday	02/08/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Tuesday	02/09/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Wednesday	02/10/21	6,754,736.32	-	\cdot	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Thursday	02/11/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Friday	02/12/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Saturday	02/13/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Sunday	02/14/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Monday	02/15/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Tuesday	02/16/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Wednesday	02/17/21	6,754,736.32	-	-	5,245,263.68	5,245,263.68	6,754,736.32	0.00250	46.91		1.87288\%	272.88				
Thursday	02/18/21	6,754,736.32	359,457.41	-	5,604,721.09	5,604,721.09	6,395,278.91	0.00250	44.41		1.87288\%	291.58				
Friday	02/19/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,278.91	0.00250	44.41		1.87288\%	291.58				
Saturday	02/20/21	6,395, 278.91	-	-	5,604,721.09	5,604,721.09	6,395, 278.91	0.00250	44.41		1.87288\%	291.58				
Sunday	02/21/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,27.91	0.00250	44.41		1.87288\%	291.58				
Monday	02/22/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,27.91	0.00250	44.41		1.8728\%	291.58				
Tuesday	02/23/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395, 278.91	0.00250	44.41		1.87288\%	291.58				
Wednesday	02/24/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,278,91	0.00250	44.41		1.87288\%	291.58				
Thursday	02/25/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,27.91	0.00250	44.41		1.87288\%	291.58				
Friday	02/26/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,278,91	0.00250	44.41		1.87288\%	291.58				
Saturday	02/27/21	${ }_{6}^{6,395,278.91}$	-	-	5,604,721.09	5,604,721.09	${ }_{6,395,278.91}^{6,393791}$	0.00250	44.41		${ }^{1.87788 \%}$	291.58				
Sunday	02/28/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,278.91	0.00250	44.41		1.87288\%	291.58		1,285.96	\$	$\underline{7,846.34}$
Monday	03/01/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,278.91	0.00250	44.41		1.86513\%	290.38				
Tuesday	03/02/21	6,395,278.91	-	-	5,604,721.09	5,604,721.09	6,395,27.91	0.00250	44.41		1.86513\%	290.38				

		Libor Rate Advances														
Day of Week	Date	Beginning Balance Availability	Advances	Payments	Total Amount Borrowed	Total Borrowed All Advances	Ending Balance Availability	Unused Fee \%	Unused Fee Amount	check total	LIBOR + 1.75\%	Interest Expense		Monthly Unused Fee Unused Fee		Monthly Interest Expense
Saturday	05/08/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.02250	77.74		1.85850\%	41.55				
Sunday	05/09/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Monday	05/10/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.02250	77.74		1.85850\%	41.55				
Tuesday	05/11/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Wednesday	05/12/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.02250	77.74		1.85850\%	41.55				
Thursday	05/13/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Friday	05/14/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.02250	77.74		1.85850\%	41.55				
Saturday	05/15/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Sunday	05/16/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Monday	05/17/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Tuesday	05/18/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Wednesday	05/19/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Thursday	05/20/21	11,195,136.80	-	-	804,863.20	804,863.20	11,195,136.80	0.00250	77.74		1.85850\%	41.55				
Friday	05/21/21	11,195,136.80	491,735.87	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Saturday	05/22/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Sunday	05/23/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Monday	05/24/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Tuesday	05/25/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Wednesday	05/26/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Thursday	05/27/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Friday	05/28/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Saturday	05/29/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Sunday	05/30/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Monday	05/31/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94	\$	2,372.50	\$	$\underline{1,567.34}$
Tuesday	06/01/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Wednesday	06/02/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Thursday	06/03/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Friday	06/04/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Saturday	06/05/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Sunday	06/06/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Monday	06/07/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.02250	74.33		1.85850\%	66.94				
Tuesday	06/08/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Wednesday	06/09/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Thursday	06/10/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Friday	06/11/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Saturday	06/12/21	10,703,400.93	-	-	1,296,59.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Sunday	06/13/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Monday	06/14/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85550\%	66.94				
Tuesday	06/15/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Wednesday	06/16/21	10,703,400.93	-	-	1,296,599.07	1,296,599.07	10,703,400.93	0.00250	74.33		1.85850\%	66.94				
Thursday	06/17/21	10,703,400.93	779,736.18	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	${ }^{68.91}$		1.85850\%	107.19				
Friday	06/18/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Saturday	06/19/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Sunday	06/20/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Monday	06/21/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Tuesday	06/22/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.02250	68.91		1.85850\%	107.19				
Wednesday	06/23/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Thursday	06/24/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	${ }^{68.91}$		1.85850\%	107.19				
Friday	06/25/21	9,923,664.75	-	-	2,076,335.25	2,076,355.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Saturday	06/26/21	9,923,64.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Sunday	06/27/21	9,923,664.75	-	-	2,076,335.25	2,076,355.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Monday	06/28/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Tuesday	06/29/21	9,923,644.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Wednesday	06/30/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	${ }^{68.91}$		1.85850\%	107.19	S	2,154.07	\$	2,571.70
Thursday	07/01/21	9,923,64.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.02250	68.91		1.85850\%	107.19				
Friday	07/02/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Saturday	07/03/21	9,923,664.75	-	-	2,076,355.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Sunday	07/04/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Monday	07/05/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Tuesday	07/06/21	9,923,644.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Wednesday	07/07/21	9,923,664.75	-	-	2,076,335.25	2,076,355.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Thursday	07/08/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	${ }_{68.91}$		1.85550\%	107.19				
Friday	07/09/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Saturday	07/10/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Sunday	07/11/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	${ }_{68.91}$		1.85850\%	107.19				
Monday	07/12/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				

		Libor Rate Advances														
Day of Week	Date	Beginning Balance Availability	Advances	Payments	Total Amount Borrowed	Total BorrowedAll Advances	Ending Balance Availability	Unused Fee \%	Unused Fee Amount	check total	LIBOR + 1.75\%	Interest Expense		Monthly Unused Fee Unused Fee		Monthly Interest Expense
Tuesday	07/13/21	9,923,664.75	-	-	2,076,355.25	2,076,335.25	9,923,664.75	0.02250	68.91		1.85850\%	107.19				
Wednesday	07/14/21	9,923,664.75	-	-	2,076,335.25	2,076,335.25	9,923,664.75	0.00250	68.91		1.85850\%	107.19				
Thursday	07/15/21	9,923,664.75	830,000.00	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Friday	07/16/21	9,093,664.75		-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Saturday	07/17/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Sunday	07/18/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Monday	07/19/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.02250	63.15		1.85850\%	150.04				
Tuesday	07/20/21	9,093,664.75	-	-	2,906,335.25	2,906,355.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Wednesday	07/21/21	9,093,664.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Thursday	07/22/21	9,093,664.75	-	-	2,906,335.25	2,906,355.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Friday	07/23/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Saturday	07/24/21	9,093,664.75	.	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Sunday	07/25/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Monday	07/26/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Tuesday	07/27/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Wednesday	07/28/21	9,093,664.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Thursday	07/29/21	9,093,664.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Friday	07/30/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Saturday	07/31/21	9,093,664.75	-	-	2,906,335.25	2,906,355.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04	s	2,038.36	s	$\stackrel{4,051.34}{ }$
Sunday	08/01/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Monday	08/02/21	9,093,664.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Tuesday	08/03/21	9,093,664.75	-	-	2,906,335.25	2,906,355.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Wednesday	08/04/21	9,093,664.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Thursday	08/05/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Friday	08/06/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Saturday	08/07/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Sunday	08/08/21	9,093,664.75	-	-	2,906,335.25	2,906,355.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Monday	08/09/21	9,093,664.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Tuesday	08/10/21	9,093,664.75	-	-	2,906,335.25	2,906,355.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Wednesday	08/11/21	9,093,644.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Thursday	08/12/21	9,093,664.75	-	-	2,906,335.25	2,906,335.25	9,093,664.75	0.02250	63.15		1.85850\%	150.04				
Friday	08/13/21	9,093,664.75	-	-	2,906,335.25	2,906,355.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Saturday	08/14/21	9,093,664.75	-	-	2,906,355.25	2,906,335.25	9,093,664.75	0.00250	63.15		1.85850\%	150.04				
Sunday	08/15/21	9,093,664.75	1,550,00.00	-	4,456,335.25	4,456,355.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Monday	08/16/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Tuesday	08/17/21	7,543,64.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Wednesday	08/18/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Thursday	08/19/21	7,543,64.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Friday	08/20/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Saturday	08/21/21	7,543,664.75	-	-	4,456,355.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Sunday	08/22/21	7,543,64.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Monday	08/23/21	7,543,664.75	-	-	4,456,355.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Tuesday	08/24/21	7,543,64.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.02250	52.39		1.85850\%	230.06				
Wednesday	08/25/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Thursday	08/26/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Friday	08/27/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Saturday	08/28/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Sunday	08/29/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Monday	08/30/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Tuesday	08/31/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06	s	1,774.68	s	6,011.58
Wednesday	09/01/21	7,543,644.75	-	.	4,456,335.25	4,456,335.25	7,543,664.75	0.02250	52.39		1.85850\%	230.06				
Thursday	09/02/21	7,543,664.75	-	-	4,456,355.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Friday	09/03/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.02250	52.39		1.85850\%	230.06				
Saturday	09/04/21	7,543,664.75	-	-	4,456,355.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Sunday	09/05/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85555\%	${ }^{230.06}$				
Monday	09/06/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Tuesday	09/07/21	7,543,664.75	-	-	4,456,355.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Wednesday	09/08/21	7,543,664.75	-	-	4,456,335.25	4,456,355.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Thursday	09/09/21	$7,543,664.75$ $7,54664.75$	-	-	4,456,335.25	4,456,335.25	$7,543,664.75$ 7,546645	0.00250	52.39 5239		1.85550\%	$\begin{array}{r}230.06 \\ \hline 2306\end{array}$				
Friday	09/10/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Saturday	09/11/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Sunday	09/12/21	7,543,664.75	-	-	4,456,333.25	4,456,335.25	$7,543,664.75$ 7,53464575	0.00250	52.39		1.85550\%	230.06				
Monday	09/13/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Tuesday	09/14/21	7,543,664.75	-	-	4,456,335.25	4,456,335.25	7,543,664.75	0.00250	52.39		1.85850\%	230.06				
Wednesday	09/15/21	7,543,664.75	1,500,000.00	-	5,956,335.25	5,956,335.25	6,043,664.75	0.00250	41.97		1.85850\%	307.50				
Thursday	09/16/21	6,043,664.75	-	-	5,956,335.25	5,956,335.25	6,043,664.75	0.00250	41.97		1.85850\%	307.50				

		Libor Rate Advances														
Day of Week	Date	Beginning BalanceAvailability	Advances	Payments	Total Amount Borrowed	Total Borrowed - All Advances	Ending Balance Availability	Unused Fee \%	Unused Fee Amount	check total	LBOR +1.75\%	Interest Expense		Monthly Unused Fee		thly Interest Expense
Monday	11/22/21	3,043,644.75	-	-	8,956,335.25	8,956,35. 25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Tuesday	11/23/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Wednesday	11/24/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Thursday	11/25/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Friday	11/26/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Saturday	11/27/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Sunday	11/28/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Monday	11/29/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Tuesday	11/30/21	3,043,664.75	-	.	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37	s	717.43	\$	${ }^{13,251.60}$
Wednesday	12/01/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Thursday	12/02/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Friday	12/03/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Saturday	12/04/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Sunday	12/05/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Monday	12/06/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Tuesday	12/07/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Wednesday	12/08/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Thursday	12/09/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Friday	12/10/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Saturday	12/11/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Sunday	12/12/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Monday	12/13/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Tuesday	12/14/21	3,043,664.75	-	-	8,956,335.25	8,956,335.25	3,043,664.75	0.00250	21.14		1.85850\%	462.37				
Wednesday	12/15/21	3,043,664.75	800,000.00	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Thursday	12/16/21	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Friday	12/17/21	2,243,664.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	50.67				
Saturday	12/18/21	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Sunday	12/19/21	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Monday	12/20/21	2,243,664.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.02250	15.58		1.85850\%	503.67				
Tuesday	12/21/21	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Wednesday	12/22/21	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	50.67				
Thursday	12/23/21	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Friday	12/24/21	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	50.67				
Saturday	12/25/21	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Sunday	12/26/21	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Monday	12/27/21	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	50.67				
Tuesday	12/28/21	2,243,664.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Wednesday	12/29/21	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	50.67				
Thursday	12/30/21	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Friday	12/31/21	2,243,664.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.02250	15.58		1.85850\%	503.67	s	560.79	s	${ }^{15,035.57}$
Saturday	01/01/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Sunday	01/02/22	2,243,664.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Monday	01/03/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Tuesday	01/04/22	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Wednesday	01/05/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	50.67				
Thursday	01/06/22	2,243,64.75	-	.	9,756,335.25	9,756,355.25	2,243,664.75	0.00250	15.58		1.85850\%	50.67				
Friday	01/07/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Saturday	01/08/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Sunday	01/09/22	2,243,664.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Monday	01/10/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Tuesday	01/11/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Wednesday	01/12/22	2,243,644.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Thursday	01/13/22	2,243,64.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Friday	01/14/22	2,243,664.75	-	-	9,756,335.25	9,756,335.25	2,243,664.75	0.00250	15.58		1.85850\%	503.67				
Saturday	01/15/22	2,243,64.75	807,865.00	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Sunday	01/16/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Monday	01/17/22	1,435,79.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Tuesday	01/18/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Wednesday	01/19/22	1,435,79.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Thursday	01/20/22	1,435,79.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Friday	01/21/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Saturday	01/22/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Sunday	01/23/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Monday	01/24/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Tuesday	01/25/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Wednesday	01/26/22	1,435,799.75	-	-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				

7/20/2021

Libor Rate Advances						Total Borrowed All Advances	Ending Balance Availability	Unused Fee \%	Unused Fee Amount	check total	LBOR +1.75\%	Interest Expense	Monthly Unused Fee		$\underset{\text { Expense }}{\text { Monthly Iterest }}$	
Day of Week	Date	Beginning BalanceAvailability	Advances	Payments	Total Amount Borrowed											
Sunday	04/03/22	1,435,799.75			10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38				
Monday	04/04/22	1,435,799.75		-	10,564,200.25	10,564,200.25	1,435,799.75	0.00250	9.97		1.85850\%	545.38	s	39.88	s	2,181.52
Tuesday	04/05/22															
Wednesday	04/06/22															
Thursday	04/07/22											Projected Total FALOC payments -	\$	$515,479.80$	\$	112,899.59
Friday	04/08/22															
Saturday	04/09/22														\$	128,379.39
Sunday	04/10/22															
Monday	04/11/22															
Tuesday	04/12/22															

[^0]: Tax rate is the sum of the local community rate plus the Sateevide Uility tax rate of $56.60 / \$ 100$

